Quantifying the Impact of Outflows in the Inner Regions of AGN

Mike Crenshaw (GSU) Travis Fischer (GSU) Steve Kraemer (CUA) Henrique Schmitt (NRL) Jane Turner (UMBC)

Why do we think AGN outflows are important?

- AGN feedback plays a role in:
 - formation of large-scale structure in the early Universe.
 - chemical enrichment of the intergalactic medium.
 - self-regulation of SMBH and galactic bulge growth.
- We concentrate on AGN winds in moderate luminosity (10⁴³ – 10⁴⁵ erg s⁻¹) Seyfert galaxies.
 - UV/X-ray absorbers
 - Narrow-line region (NLR) outflows
- Do AGN winds provide effective feedback?
 - Determine mass outflow rates and kinetic luminosities.

UV and X-ray Absorbers

- Blueshifted UV (C IV, N V) absorption components detected in ~60% of Seyfert 1 galaxies at outflow velocities up to 4000 km s⁻¹.
- The same AGN typically show X-ray "warm absorbers" with higher ionization lines (O VII, O VIII).

Most absorbers are between the BLR and NLR.

(Crenshaw & Kraemer, 2012, ApJ, 753, 75)

Mass Outflow Rates >> Mass Accretion Rates

(Crenshaw & Kraemer, 2012, ApJ, 753, 75)

- → Most of the outflowing gas originates outside of the inner accretion disk (or the disk would quickly dissipate.)
- → These outflows are not accretion disk winds (although we have not included ultrafast outflows [UFOs], Tombesi et al. 2011, 2013).

Kinetic luminosity up to ~5% bolometric luminosity.

(Crenshaw & Kraemer, 2012, ApJ, 753, 75)

→ Most outflows have $L_{KE} = 0.5\%$ to 5% L_{bol} , which is required by AGN feedback models (Hopkins & Elvis 2010).

→ Absorbers contribute significant feedback in moderate luminosity AGN.

Large-Scale Outflows in the Narrow Line Region (NLR) What is their impact?

→ They occur on the same scales as nuclear star formation (≤1 kpc), so could be crucial for black hole/bulge growth.

How do we determine mass outflow rates in the NLR?

- Kinematic models from STIS medium-dispersion spectra to get velocity profile: v(r).
- Photoionization models of STIS lowdispersion spectra to get density profile: n_H(r).
- Measure [O III] luminosities from HST images to get mass as a function of position (in elliptical annuli).

 $\Delta M \propto L[O \text{ III}]/n_H$ $\dot{M}_{out} = \Delta M \text{ v}(r)/\Delta r$ $\dot{L}_{KE} = 1/2 \dot{M}_{out} \text{ v}^2$

Mass Outflow in the NLR of NGC 4151

(Crenshaw et al., ApJ, in press)

- Mass outflow rate at peak is 10x that from nuclear outflow, 4 7x that of the UV/X-ray absorbers, and 230x mass accretion rate.
- \rightarrow In situ acceleration of ambient gas in the NLR.

Kinetic Luminosity in the NLR of NGC 4151

(Crenshaw et al., ApJ, in press)

- $L_{KE}/L_{bol} = 0.6\% 0.8\%$; (our benchmark for AGN feedback ~ 0.5%).
- Most of the kinetic energy is deposited ~100 pc from the SMBH.

Conclusions

- UV/X-ray absorbers and NLR clouds are outflowing in nearby AGN on scales of 0.1 – 1000 pc.
- Absorber mass outflow rates can be 10 1000 times the accretion rates.

→ Most of the outflow originates outside the accretion disk. Kinetic luminosities of the absorbers can be 0.5% to 5% of the bolometric luminosities.

- \rightarrow They likely provide significant feedback in these AGN.
- NLR outflows may provide even more feedback than outflowing absorbers (based on NGC 4151).
 - \rightarrow In situ acceleration from a fueling flow and/or reservoir of gas.
 - \rightarrow Occur on scales appropriate for termination of star formation.

The End

NHC 4151 has an Intermediate-Line Region (ILR).

(Crenshaw & Kraemer, 2007, ApJ, 659, 250)

- FWHM (ILR) = 1170 km/s.
- Matches broad absorber in velocity extent and physical conditions, at ~0.1 pc from SMBH.

Emission-Line Profiles in NGC 4151.

blue - narrow red - intermediate green - broad

Variability of C IV Emission Components

- Both BLR and ILR respond positively to continuum changes
- Size of ILR \leq 140 light days (0.12 pc)

