Early Protostar Evolution

Phil Myers Harvard-Smithsonian Center for Astrophysics

NealFest • University of Texas, Austin • April 25, 2013

Introduction

Why we are here

some of Neal's pursuits

and his tools

Classic Neal papers

comprehensive studies of observations & models \rightarrow conclusions

1975 4 authors 130 cites H_2CO line absorption \rightarrow collisional cooling

THE SPITZER c2d LEGACY RESULTS: STAR-FORMATION RATES AND EFFICIENCIES; EVOLUTION AND LIFETIMES

NEAL J. EVANS II¹, MICHAEL M. DUNHAM¹, JES K. JØRGENSEN², MELISSA L. ENOCH^{3, 4}, BRUNO MERÍN^{5, 6}, EWINE F. VAN DISHOECK^{5, 7}, JUAN M. ALCALÁ⁸, PHILIP C. MYERS⁹, KARL R. STAPELFELDT¹⁰, TRACY L. HUARD^{9, 11}, LORI E. ALLEN⁹, PAUL M. HARVEY¹, TIM VAN KEMPEN⁵, GEOFFREY A. BLAKE¹², DAVID W. KOERNER¹³, LEE G. MUNDY¹¹, DEBORAH L. PADGETT¹⁴, AND ANNEILA I. SARGENT³

2009 18 authors 339 cites infall rate \approx SIS collapse rate >> typical accretion rate \rightarrow nonsteady accretion.

Protostar evolution

Spitzer Science Center (after Shu, Adams & Lizano 1987)

Outline

"protostar evolution" = before and after star birth

settings of star formation

observing and simulating protostars

modeling protostars with IMF constraint

Settings: big filamentary complexes

"Nessie" Jackson et al 10 ~80 pc

"South-Nest"

Vela C Hill et al 11 \sim 30 pc

G14.2-0.5 ~ 5 pc Busquet et al 11

Small filamentary complexes

Ser S ~ 2 pc

Gutermuth et al 08

Orion A ~1pc

Johnstone & Bally 99

B59~1 pc

Alves et al 10

Morphological types--single filament (Nessie) parallel filaments (G14.2-0.5) network (Vela C South-Nest) hub-filament (CrA). Clusters in hubs (M 09)

Cores in filaments

multiple cores, ~ regular spacing, many size scales, infall

Observing protostars

Protostar evolution from population studies

Protostar spectra evolve as protostar accretes, core & disk disperse (Lada & Wilking 84, Adams et al 87)

Spectral evolution

Furlan 13, Wilking 89, Shu et al 87

Population studies

Aquila • Herschel • Bontemps et al 10

Simulating protostars

SPH turbulent fragmentation, 500 M_{\odot} cloud makes 147 stars, 36 bds in 1.2 t_{ff} = 0.23 Myr. Radiative heating feedback, ejection, exhaustion, no outflows, no **B**. Bate 12

Also, Krumholz et al 12, Pudritz 10, Federrath & Klessen 12, Offner et al 09, Smith et al 09

Protostars and the IMF

As protostars approach IMF, observable PLF tests star formation models (MO 10, OM 11)

low mass stars-- exclude IS, allow TC, CA, 2CTC, 2CCA - OM 11; Dunham & Vorobyov 12

 $MF = IMF \rightarrow PLF(accretion model)$

100.

Protostar models matching IMF

Accretion (IMF)	Competitive accretion	rate increases with m , competing with neighbors
	Stopped accretion	duration set by ejection, feedback, exhaustion
Fragmentation $(CMF \rightarrow IMF)$	Gravo-turbulent	core formation by MHD shocks, weak B, lognormal λ_J
	Turbulent dispersion	turbulence compresses and disperses gas, Jeans collapse depends on scale
CA Zinnecker 82, Bonnell et al 01, Bate 12GT Padoan & Nordlund 02		SA Adams & Fatuzzo 96, Basu & Jones 04, Myers 09-13 TD Jappsen et al 05, Hennebelle & Chabrier 08, Hopkins 12

Initial and final conditions model matches IMF

2CA accretion equally likely stopping \rightarrow MF \approx IMF thermal core in turbulent clumpejections, stellar feedback3 parameters initial & final conditions

$$\frac{dN}{d\log m} = \ln(10)N\Gamma(\mu/\nu)(\mu+\nu)^{-\Gamma} , \quad \mu = \frac{m}{m_0}, \quad \nu = (1+\mu^2)^{1/2}, \quad \Gamma = \frac{m_0}{\dot{m}_0 \tau_{stop}}$$

slope = 1 due to constant \dot{m}_0 $\frac{\log \frac{dN}{d\log m}}{\log \frac{dN}{d\log m}}$ when typical star-forming gas has $\tau_{\rm f} = \tau_{\rm stop}$ $T \,({\rm K}) \, \overline{n} \, (10^4 \,{\rm cm}^{-3}) \, \varepsilon$ 10 8 1/3 nearby clouds 20 64 1/3 IRDCs

-slope $\Gamma = M(CIS)/M(SIS) = 1.34$ $\Gamma \approx 1.35$ Salpeter slope "universal" - independent of *M*, *T*, *n*

M12, 13 14

Initial and final conditions model matches PLFs

2CA model predicts evolution of MF, PLF (cf. McKee & Offner 10)

high-*m* and high-*L* tails grow as cluster evolves

model fits PLFs in c2d clouds, Orion A, and Cygnus X (Evans et al 09, Dunham et al 10, Kryukova et al 12a,b; M12)

Summary

Protostars

form in cores in filamentary clouds

evolve by accreting, by dispersing core & disk

accrete at rates still to be measured (soon?)

test star formation models via their LFs

and...

Serpens South Gutermuth et al 08

Thank you, Neal!

for your achievements, generosity, and leadership