

EARLY ALMA RESULTS ON MASSIVE STAR FORMATION

Manuel Merello

Neal J. Evans II, Leonardo Bronfman, Guido Garay, Lars-Ake Nyman, Nadia Lo, Juan Cortés, Maria Cunningham

Introduction

- Massive stars:
 - Principal source of heavy elements and UV radiation.
 - Source of turbulence and mixing in the ISM of galaxies: winds, massive outflows, expanding HII regions and supernova explosions
 - Still no complete picture:
 Some observational problems:
 Short timescale of early stages (<10⁴ yrs)
 Large distances
- Early stages of massive SF:
 - Embedded phase observations: IRDC Hot molecular cores HCHII and UCHII regions

The G331.5-0.1 region

CO(2-1) map with IRAS point sources

Dust emission: ATLASGAL survey

•Distance: 7.5 kpc •Mass (C¹⁸O): 3.5×10⁶ Msun

18.2" Resolution, 870 um

Contours: $C^{18}O(1-0)$ by 10% of peak emission

Mid-infrared image toward the G331.5-0.1 complex

Spitzer IRAC 3.6 μ m (blue), 4.5 μ m (green) and 8.0 μ m (red). **Contours:** dust emission at 0.87 mm. **Red:** ATCA 3.6 cm White: RMS sources

FIR luminosity: 3.6 \times 10 6 L $_{\odot}$

Clump MM3: M = 6000 Msun $r_{clump} = 1.2 \text{ pc}$

Spectral index are consistent with ionized stellar winds (Reynolds 1986)

Mid-infrared image toward the G331.5-0.1 complex

(Reynolds 1986)

Mid-infrared image toward the G331.5-0.1 complex

Spitzer IRAC 3.6 μ m (blue), 4.5 μ m (green) and 8.0 μ m (red). **Contours:** dust emission at 0.87 mm. **Red:** ATCA 3.6 cm White: RMS sources

FIR luminosity: 3.6 \times 10 6 L $_{\odot}$

Clump MM3: M = 6000 Msun $r_{clump} = 1.2 \text{ pc}$

Spectral index are consistent with ionized stellar winds (Reynolds 1986)

Molecular outflow

• Assuming LTE and optically thin emission, the total mass M(CO) in each lobe are:

25.9 M⊙ at blueshifted velocities16.8 M⊙ at redshifted velocities

One of the most luminous and energetic outflows found toward massive star forming regions

(compare with e.g. Wu et al. 2004, Beuther et al. 2002b)

- momentum* ~ $2.4 \times 10^3 \ M_{\odot} \ km \ s^{-1}$
- kinetic energy* ~1.4×10⁴⁸ ergs
- mass outflow rate $\sim 1.8 \times 10^{-2}$ M_{\odot} yr⁻¹
- momentum outflow rate $\sim 0.77 \ M_{\odot} \ km \ s^{-1} \ yr^{-1}$
 - $\sim 0.77 \text{ M}_{\odot} \text{ KIII S}^{-1} \text{ yr}^{-1}$
- luminosity $\sim 2 \times 10^5 L_{\odot}$
- Rotational Temp. ~100K

*Assuming a velocity characteristic of the entire flow, V_{char} = 80 km/s

ALMA observations in High-mass SF Regions

- Massive clusters: case of G025.+0.02 (Rathborne et al.)
- Dynamics of IRDCs, using N₂D+ (Tan et al.)
- Observations of filaments collapsing massive cores (Peretto et al.)

• Our project: Observations in band 7 of G331.5-0.1 outflow

- Aims: Resolve molecular outflow at 1.4", study the physical parameters of the G331.5-01 outflow with different tracers
- Five lines chosen:
 - SiO (8-7) CO (3-2) CH₃OH HCO+ (4-3) H¹³CO+ (4-3)
- 1.7 hrs on source
- Synthesized beam: 1.38" x 0.7 "
- 17 antennas, 136 baselines (between 18.5 and 269 m)

- Emission confined within region of size ~ 4 " (0.14 pc at D=7.5 kpc)
- Ring type or projected shell structure at ambient velocity (-89 km s⁻¹). Inner ring radius ~0.7" (0.03 pc) (beam size)
- Dynamical time t_{dyn} < 1000 yrs for SiO ring.

Results: H¹³CO+ (4-3) emission

Results: H¹³CO+ (4-3) emission

- H13CO+ emission: size of 5.8" × 3.64"
- SiO emission centered at the cavity (black contours by 20% of peak emission)
- 3.6 cm continuum emission at the center of the SiO cavity (red contours by 30% peak emission).

 $16^{h}12^{m}10.5^{s}$ 10.0^{s} 0 Colour: H13CO+(4-3) **Black contours**: SiO(8-7) Red contours: 8.64 GHz

Velocity structure

 Expanding shell with high velocity outflow

Perpendicular to the jet symmetry axis

Emission from H13CO+ arises from region of selfabsorption in the spectrum profile.
Dip at ambient velocity of the source.
Profile could also suggest infalling material.

Hot core?

- Compact, infrared-bright regions
- Densities ~ 10^7 cm^-3
- Temperatures 100 K or higher
- Diameters ~ 0.1 pc
- Total mass: several hundred Msun
- Chemical signatures:
 - complex organic molecules and fully hydrogenated molecules as NH3 (first generation: surface chemistry on grains)
 - second generation (gas-phase chemistry between evaporated species): CH3OH, CH3OCH3, CH3OCHO, CH3CCH, NH2CHO.

- No H2O,H2S and NH3 lines fall in the observed spectral windows
- Several molecules from "second generation": SO2, CH3OCH3, CH3CCH

Summary

- G331.5-0.1 region, one of the most extended, massive and luminous complex of massive star formation in the Galactic disk.
- Four compact radio sources. Component C with spectral index consistent with ionized stellar winds.
- Discovery of one of the most powerful molecular outflow known so far. Luminous and massive protostellar object.
- ALMA observations revealed a ring type structure or shell in projection around the peak position of radio continuum.
- The dynamic timescale <1000 yrs
- Model of expanding shell toward the ambient velocity suggested, in addition to the outflow emission
- Chemistry and physical properties suggest that this source could correspond to a hot core.