Constraining on the Massive Neutrino Mass from the Galaxy Power Spectrum of the HETDEX

Masatoshi Shoji Department of Astronomy University of Texas-Austin

BAO vs GPS (shoji et al. 2009)

- Baryon Acoustic Oscillation gives robust measure of the D_A(z) and H(z)
- Galaxy Power Spectrum better constrains D_A(z) and H(z) with the non-linearities (NL) under control
 - NL Structure Growth
 - NL Galaxy Bias
 - NL Redshift Space Distortion
 - NL Suppression by Massive Neutrino ←NEW!

Massive Neutrino and Cosmology

- How massive is neutrino?
 - Oscillation Experiments (both solar and reactor)
 - Σm_{ν,i} >0.056 (0.095) eV
 - In flat Λ CDM model
 - $\Omega_v = \Sigma m_{v,i}/93.14h^2 eV < 0.27 \rightarrow \Sigma m_{v,i} < 12 eV$
 - Other Constraints from LSS and CMB (i.e., 2dF-gal, SDSS, Ly-α, WMAP, SN-la)
 - $\Sigma m_{v,i} < 0.6 \text{ eV}$
- How can we put a constraint on the mass of neutrino from the power spectrum?

Massive Neutrino Suppresses Power Spectrum ~ ~Effect on Linear Power Spectrum~

- Massive neutrino acquires velocity dispersion ($0 << \sigma_v < 1$) upon the transition to the nonrelativistic particle at $z_{nr}(m_{v,i})$
- Within the free-streaming scale, *k*> *k*_{FS}, structure growth is suppressed : analogous to the Jeans scale if we replace *k*_{FS} with *k*_J
- At k>>k_{FS}, power spectrum is suppressed by a fixed amount: P_{ΛMDM}/P_{ΛCDM}=1-8[Ω_ν/Ω_m]

— Linear power spectrum with degenerate massive neutrino divided by the linear power spectrum with mass-less neutrino (N_v =3.04)

Non-linear Suppression by Massive Neutrino

- Calculate the density contrast up to 3rd order solving perturbed continuity, Poisson and Euler equation
- The suppression effect can be understood by the two step processes

- Density contrast of the neutrino is
suppreval:
$$g_n(\mathbf{k}, \tau) \equiv \frac{\delta_{n,b}(\mathbf{k}, \tau)}{\delta_{n,c}(\mathbf{k}, \tau)}$$
 dent

 Reduced gravitational potential within the filtering scale (i.e., k_{FS} < k) results suppression of the growth rate:

Phase Shift of the BAO by Massive Neutrino

- Mode mixing due to non-linear structure growth (power transfer from low k to high k)
- 2. Distort the BAO shape by filtering function
- 3. Weaken the non-linearity by suppressing power spectrum at $k >> k_{FS}$

Phase shift [%]	z=2.0	3.0	4.0
$f_v=0$ (reference)	-1.2	-0.7	-0.3
k _{FS} =0.1 hMpc⁻¹	0.4	0.3	0.0
k _{FS} =0.5 hMpc⁻¹	0.8	0.9	0.3

Linear BAO vs. Non-linear BAO phases

1. NL-structure growth

2. Filtering by free-streaming

Conclusions

- Free-streaming of the massive neutrino distorts the power spectrum around the relevant scale as the BAO (0.05~0.3 hMpc⁻¹)
 - Potentially degenerate with the FoG effect
- NL behavior of the massive neutrino free-streaming suppresses the power spectrum in non-trivial way ← under control (Shoji & Komatsu 2009 in prep)
- BAO shape and phase is distorted in the presence of the massive neutrino. Its extent depends on the mass of the massive neutrino
- Understanding the effect of the massive neutrino on the power spectrum brings extra constraints on $\Sigma m_{\nu,i}$ and potentially $m_{\nu,i}$ for non-degenerate massive neutrino

Supplements

$$g_1(k) = \frac{1}{1 + (k / \tilde{k}_{FS})^2}$$
$$\tilde{k}_{FS} = \lambda(m_{v,i}, \Omega_m, \Omega_\Lambda, z) k_{FS}$$

Linear vs. Non-linear

