HETDEX & f_{NL}

Measuring **primordial non-Gaussianity** from HETDEX power spectrum

Donghui Jeong

Department of Astronomy and Texas Center for Cosmology University of Texas at Austin HETDEX workshop, Feb. 18, 2009

One page introduction to f_{NL}

- f_{NL} = measure of primordial non-Gaussianity in curvature perturbation
- In "plain vanilla" models of inflation, initial perturbations are Gaussian.
 "plain vanilla" = slow rolling single scalar field with canonical kinetic term and was initially in the Banch-Davies vacuum
- If f_{NL} is NOT zero, inflation may be explained by "exotic" models.
 - "exotic models"
 - multi-field
 - non-canonical kinetic term (not ¹/₂mv²)
 - fast rolling inflation
 - departure from Banch-Davies vacuum
- For more information, see Komatsu, astro-ph/0206039 (Ph.D. Thesis)

Current status of measuring f_{NL}

- Mostly come from the higher order statistics of CMB anisotropy
 higher order (n>3) "connected" correlation function is zero for Gaussian statistics.
- From CMB Bispectrum (Fourier transf. of three point correlation function)
 - $f_{NL} = 32 \pm 34$ (Creminelli et al. (2006) WMAP3)
 - $f_{NL} = 87 \pm 30$ (Yadav & Wandelt (2007) WMAP3)
 - $f_{NL} = 55 \pm 30$ (Komatsu et al. (2008) WMAP5)
 - $f_{NL} = 38 \pm 21$ (Smith et al. (2009) WMAP5)
 - f_{NL} = ?? ± 5 (??? et al. (2013) Planck!)
- By the way, $f_{\rm NL}$ here is referred as $~f_{\rm NL}^{\rm (local)}$ elsewhere.

 $\Phi(\boldsymbol{x}) = \phi(\boldsymbol{x}) + f_{NL} \left(\phi^2(\boldsymbol{x}) - \langle \phi^2(\boldsymbol{x}) \rangle \right)$

f_{NL} from large scale structure

- Three ways of measuring $\mathbf{f}_{\rm NL}$ from large scale structure
 - Galaxy Bispectrum
 - Cluster mass function
 - Galaxy Power spectrum (through scale dependent large scale bias)

f_{NL} from HETDEX bispectrum

• Sefusatti & Komatsu (2007)

2	V	n_g	z	$k_{\rm max}$	b_1	b_2	Δb_1	Δb_2	Δb_1	Δb_2	$\Delta f_{NL}^{ m loc.}$	Δb_1	Δb_2	$\Delta f_{NL}^{ m eq.}$
SDSS	0.3	30		0.09	1.19	-0.10	0.270	0.151	0.309	0.151	255.5	0.450	0.421	1775
LRG	0.72	1	0.35	0.11	2.14	0.96	0.209	0.348	0.223	0.353	113.4	0.338	0.726	998
APO-LSS	3.8	4	0.35	0.11	1.69	0.21	0.069	0.068	0.071	0.069	34.9	0.108	0.160	386
WFMOS1	1.6	5	0.7	0.14	1.87	0.45	0.076	0.096	0.080	0.096	41.0	0.123	0.216	435
	2.4	5	1.1	0.18	2.16	1.00	0.047	0.081	0.048	0.081	23.1	0.076	0.175	266
		comb	ined						• • •		20.1		• • •	227
ADEPT	45	1	1.25	0.20	2.97	3.44	0.020	0.063	0.021	0.063	6.1	0.031	0.111	73
	55	1	1.75	0.26	3.44	5.43	0.017	0.066	0.017	0.067	4.5	0.025	0.112	53
		comb	ined						• • •	• • •	3.6		• • •	43
WFMOS2	0.5	5	2.55	0.38	3.27	4.64	0.058	0.220	0.060	0.223	25.7	0.094	0.406	256
	0.5	5	3.05	0.48	3.64	6.39	0.056	0.253	0.058	0.255	22.1	0.087	0.439	215
		comb	ined						• • •		16.8		• • •	164
HETDEX	0.68	5	2.25	0.34	3.05	3.70	0.051	0.172	0.053	0.174	23.6	0.083	0.326	244
	0.69	5	2.75	0.42	3.42	5.32	0.049	0.199	0.050	0.201	20.0	0.077	0.357	202
	0.67	5	3.25	0.53	3.79	7.16	0.050	0.237	0.051	0.238	18.0	0.076	0.401	177
	0.64	5	3.75	0.65	4.14	9.20	0.053	0.291	0.054	0.292	17.1	0.079	0.469	163
		comb	ined		•••	•••	• • •		• • •		9.6	•••	• • •	95
CIP	1.26	50	4	0.71	3.16	4.12	0.010	0.036	0.010	0.037	4.7	0.016	0.066	51
	1.13	50	5	1.03	3.72	6.76	0.010	0.047	0.010	0.048	4.0	0.015	0.079	40
	1.02	50	6	1.46	4.26	9.90	0.011	0.066	0.012	0.066	3.8	0.016	0.102	36
	(comb	ined			• • •		• • •			2.4	• • •	• • •	24

\mathbf{f}_{NL} and large scale bias I

• From non-Gaussian curvature perturbation to density field

 $\Phi(\mathbf{x}) = \phi(\mathbf{x}) + f_{NL}(\phi^2(\mathbf{x}) + \langle \phi^2 \rangle)$ **Taking Laplacian** $\nabla^{2} \Phi = \nabla^{2} \phi + 2f_{NL} \left[\phi \nabla^{2} \phi + |\nabla \phi|^{2} \right]$ **grad(\phi)=0 at the potential peak** $\nabla^{2} \Phi = \nabla^{2} \phi + 2f_{NL} \phi \nabla^{2} \phi$ Poisson equation Laplacian(φ)∝δρ=δ<ρ> $\delta_{NG} \simeq \delta (1 + 2f_{NL}\phi_p)$ Dadal et al.(2008); Matarrese&Verde(2008); Carmelita et al.(2008); Afshordi&Tolly(2008);

Slosar et al.(2008);

$f_{\rm NL}$ and large scale bias $I\,I$

• Heuristic understanding with peak background split method

• For **Gaussian case**, background density field provide an offset to the peaks, and <u>peak density contrast</u> <u>proportional to the large scale density</u> <u>contrast</u>. (linear bias)

• For **non-Gaussian case**, on top of the large scale density contrast, <u>large</u> <u>scale curvature perturbation provide</u> <u>yet further offset to the peak</u>!

$$\delta_{NG} \simeq \delta (1 + 2f_{NL}\phi_p)$$
scale dependent!

$$\delta_h = b_L (\delta + 2f_{NL}\phi_p\delta_c)$$

HETDEX P(k) with f_{NL}

Result from Fisher matrix

• Fisher matrix for the redshift space power spectrum (Kaiser effect)

$$P_g(k,\mu) = P_0 + \left[b + \frac{2f_{NL}\delta_c(b-1)}{M(k,z)} + f\mu^2\right]^2 P_L(k)$$

• marginalized errors on f_{NL} (fiducial $f_{NL} = 50$)

marginalized parameters	1σ error on f _{NL}	marginalized parameters	1σ error on f _{NL}
None	10.34	b, σ ₈	15.23
P ₀	12.56	P ₀ ,b	17.17
b	15.06	P ₀ ,b,n _s	23.81
n _s	13.03	P_0, b, n_s, σ_8	24.06
α	19.91	P_0, b, n_s, σ_8, f	24.07
σ ₈	14.75	$P_{0'}n_{s'}$, $\alpha_{s'}\sigma_{8'}f$	50.21
f	11.90	$P_0,b, n_s, \alpha_s,\sigma_8$	52.63

Conclusion

- Measuring primordial non-Gaussianity (f_{NL}) is very interesting because we can distinguish between "plain vanilla" and "exotic" inflation models.
- Current measurement of f_{NL} mainly comes from CMB bispectrum.
- There are many ways that we measure f_{NL} from large scale structure.
- For **HETDEX**, we can measure f_{NL} by using both bispectrum and large scale power spectrum. <u>Those two measurements are independent!!</u>