

Studying Cosmic Star Formation History with [OII] emitters from HETDEX

Caryl Gronwall (PSU)

[OII] emitters in HETDEX

- [OII] emitters are primary "contaminant" in LAE search for HETDEX, z < 0.5, last 5 Gyr of cosmic time.
- [OII] is a tracer of SFR, so can trace star formation history.
- Can be distinguished from LAEs with EW cut.
 Observed EW > 80Å (e.g., Gronwall et al. 2007)
- Will be discovered in large numbers (at least ~1 million) over a large field of view (420 deg²).
- Large sample/area allows for study of properties as a function of luminosity/mass, environment, etc. Also allows for discovery of intrinsically rare objects.

[OII] emitters from VIRUS-P

Evolution in the [OII] LF

Evolution in the [OII] LF

Zhu et al (2008) DEEP2 n~14,000

FIG. 1.— Observed [O II] lumino bins. The solid lines are the power law luminosity function. The dashed lines bins correspond to the solid line in t dashed-dotted lines correspond to the -1.1, -1.3 and -1.5, and the dotted the turnover in the luminosity function.

FIG. 5.— SFR density, $\rho_{\rm SFR}$, versus redshift based on various multi-wavelength SFR indicators (Hopkins 2004). Our four estimates of $\rho_{\rm SFR}$ are shown as large filled squares, where the vertical error bars are obtained by allowing the turnover positions and the slope of the faint end of the [O II] luminosity function to vary in a sensible way (see text for details).

osity function. (Top) Evo c^{-3} of the strongest [O II]g s⁻¹. The dashed line is (Bottom) Evolution of the sined by where the space inls $10^{-3.5}$ dex⁻¹Mpc⁻³.

The dotted line is the linear fit to the data given by eq. (8).

17 February 2009

SFR vs Environment

SDSS @ z~0

Cooper et al (2008): n~100,000/15,000

SFR vs Environment

Figure 10. The dependence of mean sSFR on environment at $z \sim 0.1$ in the SDSS (left-hand panel) and at $z \sim 1$ in DEEP2 (right-hand panel). We plot the logarithm of the mean and of the error in the mean of the sSFR in discrete bins of galaxy overdensity within the SDSS-A and DEEP2-A samples. The dashed red line in each plot shows a least-squares linear regression fit to the data points, with coefficients of the fits given in Table 2.

Figure 11. The dependence of mean SFR on environment at $z \sim 0.1$ (left-hand panel) and at $z \sim 1$ (right-hand panel). We plot the logarithm of the mean SFR and of the error in the mean SFR in discrete bins of galaxy overdensity within the SDSS-A and DEEP2-A samples. The dashed red line in each plot shows a linear regression fit to the data points, with coefficients of the fits given in Table 3. Note that the SFR is given in units of $h^{-2} M_{\odot} yr^{-1}$.

7

Evolution in Metallicity

Rodrigues et al (2008); n~88

Late forming massive galaxies? Infall of pristine gas?

Low Metallicity Galaxies

Ultra-strong Emission-Line Galaxies (USELs)

High-EW H α , [OIII] in NB815 and NB913 surveys for z=5.7/6.5 LAEs

All have $12 + \log(O/H) < 8.4$, 7 are extremely metal poor with $12 + \log(O/H) < 7.65$

12+log(O/H)=7.25±0.03 z=0.818

Hu et al (2009)/Kakazu et al (2007)

17 February 2009

Low Metallicity Galaxies

Hu et al (2009)/Kakazu et al (2007)

17 February 2009

Caryl Gronwall

[OII] Science with HETDEX

What we can do with ~1 million [OII] galaxies:

- Evolution of [OII] LF from z=0 to 0.5 (5 Gyr) → cosmic star formation history.
- Evolution in metallicity vs. redshift.
- [OII] properties as a function of galaxy environment + redshift.
- Intrinsically rare objects:
 - Metal-poor glaxies
 - Outliers from metallicity-luminosity relation
 - Something we haven't thought of yet!
- Metallicity calculations will require red spectra for most of redshift range. Follow-up with red grating of part of survey area?