SINFONI Observations of Galaxy Dynamics and Assembly at \(z \sim 2 \)

Kristen Shapiro and the SINS team
Galaxy Assembly and Evolution at $z \sim 2$

Large, rotating disks are important at high-z

They are clumpy, thick, rapidly star-forming

They are assembled by cold flows

They are forming bulges secularly

The backbones of local scaling relations are in place

Bouché et al. 2007; Cresci et al. in prep; Förster Schreiber et al. 2006, in prep; Genel et al. 2008; Genzel et al. 2006, 2008; Shapiro et al. 2008, in prep
• JHK Integral Field Spectroscopy
• 0.125"/pixel; FOV = 8” x 8”
• R = 2000-4500

PIs: F.Eisenhauer, H.Bonnet
SINFONI at $z \sim 2$

- JHK \rightarrow Rest-Frame Optical ($H\alpha$ Emission)
- $1'' \sim 8.2$ kpc
- 1-11 hours of integration on 80 objects

PI: R. Genzel
SINFONI at $z \sim 2$

- JHK \rightarrow Rest-Frame Optical (H_α Emission)
- 1" ~ 8.2 kpc
- 1-11 hours of integration on 80 objects

PI: R. Genzel
The Survey

Förster Schreiber et al. in prep
The Survey

Förster Schreiber et al. in prep
The Survey

Förster Schreiber et al. in prep
The SINS Survey

Förster Schreiber et al. in prep
There are large disks at z~2
There are large disks at $z \sim 2$

Kinemetry analysis of first and second velocity moment for highest quality SINS data

$$K(\psi) = A_0 + A_1 \sin(\psi) + B_1 \cos(\psi)$$
$$+ A_2 \sin(2\psi) + B_2 \cos(2\psi)$$
$$+ A_3 \sin(3\psi) + B_3 \cos(3\psi) \ldots$$

Krajnović et al. 2006

Shapiro et al. 2008
High-z disks are clumpy

Förster Schreiber, Shapley et al. in prep, see also e.g. Elmegreen & Elmegreen 2007
High-z disks are clumpy, unlike merger remnants

Figures from Genzel et al. 2006, Robertson & Bullock 2008
Super SF clumps are massive

$M_{\text{SF Region}} \sim 10^8 M_\odot$

$\sim 8-10$ clumps / galaxy

e.g. Genzel et al. 2006, Elmegreen & Elmegreen 2006
High-z disks are thick

$V/\sigma \sim 1-7$

(from detailed dynamical modeling of 19 systems)

Genzel et al. 2008, Cresci et al. in prep
High-z disks form stars continuously

$H\alpha$ Intensity V (km/s) σ (km/s)

SFR \sim 30-200 M_\odot/yr

High-z disks form stars continuously

$M_\ast \sim 8 \times 10^{10} \, M_\odot$

SFR ~ 100-$200 \, M_\odot/\text{yr}$

Age ~ 500 Myr

Förster Schreiber et al. 2006, in prep, Genzel et al. 2006, 2008, see also Daddi et al. 2007
Cold flows are the dominant accretion mechanism

\[
\frac{V}{\sigma} \sim 1-7
\]

\[t_{\text{accretion}} \sim 200-800 \text{ Myr}\]

SFR \sim 30-200 M_\odot/\text{yr} and is continuous

e.g. Dekel et al. 2008

Genzel et al. 2006, Shapiro et al. 2008
Central concentrations are forming

Genzel et al. 2008

Local scaling relations are appearing

\[z \sim 1.5 \quad z \sim 2.2 \]

\[\log V (\text{km/s}) \]

\[\log M_* (M_\odot) \]

Cresci et al. in prep
Local scaling relations are appearing
... maybe even BH scaling relations

+ Genzel et al. 2008 dynamical modeling of bulge masses

Shapiro et al. in prep
Galaxy Assembly and Evolution at \(z \sim 2 \)

Large, rotating disks are important at high-\(z \)

They are clumpy, thick, rapidly star-forming

They are assembled by cold flows

They are forming bulges secularly

The backbones of local scaling relations are in place