The environmental impact of galaxy evolution

Jesper Rasmussen, Carnegie Observatories
+ Trevor Ponman, Univ. of Birmingham, UK
Galaxy Groups as Probes of Cosmic Feedback

Hot gas in groups (temperature, “entropy”, metallicity) affected by cosmic feedback.

Groups are common and very susceptible to these effects.
Galaxy Groups as Probes of Cosmic Feedback

Hot gas in groups (temperature, “entropy”, metallicity) affected by cosmic feedback.

Groups are common and very susceptible to these effects.

Binned abundance profiles of 15 groups (JR + Ponman 2007):

\[r_{500} \bar{\rho}(r \leq r_{500}) = 500 \rho_{\text{crit}} \]
Supernova Feedback

SN Ia/II ratio in core ⇒
“recent” enrichment
($z \approx 0.7$; HDF/CDF)

Ratio in outskirts:
Consistent with
predictions for $z \gtrsim 1$.
(Dahlen+ 04)

SN yields from
Iwamoto+ 99 (SN Ia),
Nomoto+ 06 (cc-SN)
Supernova Feedback and Star Formation History

Within r_{500}:

SN Ia

$M_{\text{Fe, Ia}} / L_K (M_\odot / L_\odot)$

$\langle T \rangle \text{ (keV)}$

Jesper Rasmussen

UT Austin Galaxy Evolution Workshop, Nov 2008

jr@ociw.edu
Supernova Feedback and Star Formation History

SN rates: Mannucci+ 05 for local early-types
Supernova Feedback and Star Formation History

- $M_{\text{HeII}}/L_K (M_{\odot}/L_K,\odot)$
- $L_{K,BGG}/L_{K,tot}$
Supernova Feedback and Star Formation History

Enrichment timescales indicate much higher SN rates per unit luminosity in the past.
Quantifying SN Feedback

If each SN within $r_{500} \rightarrow 10^{51}$ ergs:

- Enrichment levels correspond to ~ 0.7 keV per gas particle from SN (cf. also Davé+ 08)
- Also limits AGN feedback (virial theorem)
Quantifying AGN Feedback

For $T \sim 1$ keV systems, $E_{\text{AGN}} \sim 10^{49}$ erg per M_{\odot} of stellar mass. (independently of entropy constraints).
Quantifying AGN Feedback

For $T \sim 1$ keV systems, $E_{AGN} \sim 10^{49}$ erg per M_\odot of stellar mass. (independently of entropy constraints).

Assuming $\eta \approx 0.1$ for BH energy conversion eff.

1 order of mag. $>$ current L_{mech} of AGN (cf. Birzan+ 04)
Summary

SF and AGN feedback history can be probed using properties of hot gas in groups.
Summary

SF and AGN feedback history can be probed using properties of hot gas in groups.

SFRs much higher in the past in groups
Obs. constraints/simple models on SFR(z) and $M_\star(z)$ can be checked against our results.
SF and AGN feedback history can be probed using properties of hot gas in groups.

SFRs much higher in the past in groups
Obs. constraints/simple models on SFR(\(z\)) and M_\(\star\)(\(z\)) can be checked against our results.

Integrated AGN feedback limited
Results may help constrain galaxy formation models (and possibly SMBH growth).

Jesper Rasmussen ● UT Austin Galaxy Evolution Workshop, Nov 2008 ● jr@ociw.edu