

Recent work - Bulges @ z=0, z~1

Marc Balcells Instituto de Astrofísica de Canarias Collaborators Lilian Domínguez (IAC), Carmen Eliche (Madrid), Peletier (Groningen), César González-García (Madrid), Jesús Falcón (ESTEC)

Marc @ GTC June 2008 rember 12 G

1. Inner dense galaxy: assigned to the bulge? Or to the disk

Balcells, Graham, & Peletier 2007, ApJ, 665, 1084 Balcells 2008, ASP Conf, 390, 264

2. Ages of bulges 0.3<z<1.0 - old/young - older/younger than the disk

Domínguez-Palmero et al. 2008a, A&A, 488,1167 Domínguez Palmero & Balcells 2008b, A&A 489, 1003

Densities 3. Bulge growth 0.3<z<1.3 - rejuvenation / pseudobulge-type growth Domínguez Palmero & Balcells 2008c, ApJ, subm. 4. Minor mergers and bulge growth

> Aguerri, Balcells & Peletier 2001 Eliche-Moral, Balcells et al. 2006, A&A, 457, 91

1

Inner densest part of galaxies: the nucleus of the bulge...

... is it part of the bulge?

Structural and isophotal analysis of a well-defined SO-Sbc *inclined* sample

2008 November 12

SO-Sbc inclined galaxies

Diameter-limited, unbarred galaxies in the local Universe

NGC 5475 S0/a NGC 6010 S0/a

NGC 5326 S0/a

NGC 5719 Sab

NGC 5389 S0/a

NGC 5854 S0

NGC 5587 S0/a

NGC 6504 Sab

NGC 5746 Sb

NGC 7537 Sbc

NGC 7331 Sb

NGC 5879 Sbc

Surface brightness profiles - Sersic not enough

Many galaxies have nuclear components

Balcells, Graham & Peletier 2007a

- Two classes
 - Extended Nuclear Components (exponential profiles)
 - Unresolved Nuclear Components at HST resolution (nuclear star clusters)
- Our bulges
 - 'Clean' (pure Sérsic bulge + outer disk): 2:19 = 10%
 - Inner extended components: 11:19 = 58%
 - Inner unresolved components: 11:19 = 58%
- We are dissecting the 'bulge'

Kormendy 1977

Nuclear extended components

- Scale lengths ~50 pc
- Radial extent few 100 pc
 - NGC 4565, poster, Kormendy &
- Central μ
 - 5 mag above that of outer disk
 - As bright or brighter than µ(0) bulge
 - Selection effect on faint side
 - but not on bright side

 $I_{0,2}/L_{K,\odot} = 10^{-3.12\pm0.16} (h_2/10 \,\mathrm{pc})^{-1.26\pm0.31}$ $I_0/L_{K,\odot} = 10^{-5.30\pm0.12} (h/\mathrm{kpc})^{-1.07\pm0.05}$

Balcells, Graham & Peletier 2007a

2008 November 12

All extended bulge nuclei are disky

• — +All gals with disky isophotes have extended $\mu(r)$ nuclei

- Questions
 - Same as 'bulges' of late-type galaxies, e.g. M33?
 - Related to inner SF rings?
 - Inner/secondary bars?
 - Young (recent) vs Old (primordial) ?

Densest parts of many bulges are disky - are they part of the disk

- Including early types, S0, Sa
- If yes, then disk is clearly not exponential
- If yes, then bulge less dense, less concentrated, lower Sersic n
 - Lower dissipation, less violent relaxation

Balcells, Graham & Peletier 2007a

2008 November 12

Galaxy Evolution, Austin

Falcón et al 200

Erwin and Sparke 2003

2

Do galaxy bulges form **before** or **after** their host disks?

... or, what about together?

Study evolution of bulge-disk properties with increasing z

2008 November 12

High-z bulges - recent work

- Ellis et al 2001, Menanteau et al 2001
 - Ellipsoids in HDFs.
 - 30-50% color inhomogeneities, eg blue nuclei
 - Related to late bulge formation
 - More prominent in field samples
 - Ellipticals, really

Figure 1. The methodology of internal colour variations as applied to two HDF-North spheroidals. The upper panel shows an $I_{814} = 20.48$ mag example with low internal scatter at z = 0.77 whereas the bottom panel illustrates an $I_{814} = 21.66$ example with a bluer core at z = 0.48. The pixel-by-pixel colour distributions are shown alongside each case. Coloured dots refer to pixels where the S/N ratio (SNR) is above the adopted threshold.

- Koo et al. (2005a; 2005b)
 - Groth field, DEEP survey
 - Spheroids, GIM2D decomposition
 Simard et al (2002)
 0.73 < z < 1.04
 - 85% of photobulges are "very red", U-B>0.25-0.5
 - Propose old, metal rich with rejuvenation

Our approach - bulges inside disks

- Diameter-limited sample
 - Radius > 1.4 arcsec
 - Remove most bona-fide ellipticals
 - Remaining E's remove by axis ratio

- Groth field survey
 - HST/WFPC2, F814W, F606W
- GOODS N+S
 - HST/ACS 4 bands
 - Ground-based J, Ks: GOYA Photometric Survey
 Cristóbal-Hornillos et al. (2003)

1. Colors, bulges vs no bulges

- At 0.85 kpc on minor axis
- Observer-frame colors: bulges concentrate along passive population tracks
 - (Ages highly undetermined)
 - Same as Ellis et al. 2001

- Rest-frame colors: bulges-no bulges very different color distributions
 - Bulge's peak U-B~0.5 (52%)
 - Similar to Koo et al. 2005
 - 60% of bulges are 'very red', U-B > 0.25
- A Red Sequence of Galaxy Nuclear Colors galaxies with dense centers

2. Colors: bulge, disk, total

• Bulge vs integrated colors: strong correlation

• Bulge vs disk colors: noisier but still strong correlation

Smooth color maps • smooth gradient —

High inclination - redder side seen through • disk

•

Color gradients

2008 November 12

Galaxy Evolution, Austin

Domínguez-Palmero et al. 2008a

Correlation implies that

- 1. Color difference nucleus disk does not depend on presence of a photometric bulge
- 2. Up to z=0.8, little evidence for red bulges surrounded by blue disks
- 3. Suggests coordinated bulge-disk growth
- Redder bulges live in redder galaxies
- Bulge colors are more similar to their disks than they are to each other
 - Same as in z=0 galaxies

Peletier & Balcells 1996 Millenium Catalog, Driver et al 2005

- Bulges ("round things") do not exist in color space
- Color morphology of disk galaxies:
 - [Red Nucleus +] gentle gradient, bluer outward

2008 November 12

3

Star-forming bulges at z < 1: nature, descendants

Study how color-density relation evolves with increasing z Domínguez-Palmero & Balcells 2008 ApJL, subm

Galaxy Evolution, Austin

Blue bulges, witnessing bulge growth

- About 40% of bulges in 0.2 < z < 0.8 are blue, star-forming
- Two models for blue bulges in a diameter-limited sample
 - 1. Rejuvenation: old bulge temporarily bluens from SF, will return to RS in time.
 - 2. Bona-fide bulge growth from disk

Ellis et al. 2001

- Test: color-density trends
 - Rejuvenated bulges should have higher surface brightness than red bulges

2008 November 12

- Sample from GOODSN
 - Diameter limited 2.8"
- Nuclear colors
 - At 0.5 kpc from center
- Global colors
- μ_0 mean on aperture 1 kpc
- 3 redshift bins
 - 0.0 < z < 0.5
 - 0.5 < z < 0.8
 - 0.8 < z < 1.3

0.0 < z < 0.8

- Strong correlation:
- Densest bulges are redder
- Blue, star-forming bulges have lower density
- Blue bulges, lower μ_0 means no rejuvenation
- Galaxies without bulges: μ_0 also correlates with color:
- Color- μ_0 trend is not (entirely) due to the presence of a bulge component

0.8 < z < 1.3

- Increasing presence of blue, high- μ_0 bulges
- These show inverted color profiles: bluer inward
 - \sim half: AGN
- Model population evolution BC03, evolve color- μ_0
 - Three tracks, for z=0 red, blue, intermediate color
- All realistic tracks are oblique
- Blue, high- μ_0 bulges cannot evolve into z=0 classical bulges
- Nor can they be descendants of z=1 old, dense bulges.
- Plausible precursors of z=0 pseudobulges
- Role of AGN?
 - Outcome of the starburst
 - Future role as quenching SF, sending the bulge to the RS.

4

Do galaxy bulges grow through minor mergers?

N-body simulations of minor mergers onto disk galaxies, analyze results as in observations

Minor mergers

- Accreting disk satellites onto disk galaxies
 - TF scaling primary-secondary
- Result:
- Little satellite mass deposition in bulge
- Inward transport of disk matter
- Bulge growth out of disk material triggered by accretion
 - Explain color similarities bulge disk ?

Eliche-Moral, Balcells, Aguerri & González-García 2006

3.8E+00 8.3E+00 1.4E+00 1.4E+01 5.1E-01 3.0E-01 1.8E-01 1.1E-01 0.7E-02 4.0E-02 2.4E-02 1.4E-02 1.4E-02 1.4E-03 1.9E-03 1.9E-03 1.1E-04 4.3E-04 2.8E-04 2.8E-042.8E-04

1.0E-D8

- Inner 200-400 pc of bulges are very dense disks
 - Late addition vs primordial seed of galaxy formation ?

Balcells, Graham & Peletier 2007a

- 2. Bulges in disks 0.3<z<0.8
 - 1. Bulge Red Sequence: 'Red, dead' bulges 60%, rest star forming
 - 2. Bulge and disk colours very similar
 - Color gradients independent of presence of a bulge
 - No red bulges surrounded by young, pristine forming blue disk

Domínguez-Palmero et al. 2008a Domínguez-Palmero & Balcells 2008b

- 3. Nature of blue bulges 0.3 < z < 1.2
 - Densities of bulges: bluer bulges have lower surface brightness
 - Not rejuvenated but bulges growing from their disks
 - Population of blue and high- μ_0 bulges appears z>0.8 witnessing a phase of massive bulge formation, linked to AGN activity

Domínguez Palmero & Balcells 2008, subm.

- Minor mergers and bulge growth
- Merger dynamics dominates over mass deposition: sending disk material inward to boost B/D

Eliche-Moral, Balcells, Aguerri & González-García 2006

• Need to study clumpy disk evolution, promising mechanism for bulge formation/growth

Dynamical A processes

2008 November 12