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OUTLINE

• Enzo+Moray: Adaptive ray tracing and merging

•Pop III → II transition and dwarf galaxy formation

•The role of radiation pressure in dwarf galaxies
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RADIATION TRANSPORT BY 
RAY TRACING
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RT Equation along a Ray

• Consider point sources of radiation

• Initially, the radiation flux is split equally among all rays.
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• P := photon flux in the ray
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Adaptive Ray Tracing (Enzo+Moray) Abel & Wandelt (2002)
Wise & Abel (2011)

• Ray directions and splitting based 
on HEALPix (Gorski et al. 2005)

• Coupled with (magneto-) 
hydrodynamics of Enzo

• Rays are split into 4 child rays 
when the solid angle is large 
compared to the cell face area

• Well-suited for AMR

• Can calculate the photo-ionization 
rates so that the method is photon 
conserving.

• MPI/OpenMP hybrid parallelized.
All development in

https://bitbucket.org/enzo
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Adaptive Ray Tracing (Enzo+Moray) Abel & Wandelt (2002)
Wise & Abel (2011)

• H + He ionization (heating)

• X-rays (secondary ionizations)

• Lyman-Werner transfer (based on 
Draine & Bertoldi shielding function)

• Choice between energy discretization 
and general spectral shapes (column 
density lookup tables, see C2-Ray)

• See Mirocha+ (2012) for optimized 
choices for energy bins.

• Radiation pressure from continuum

• Choice between c = Ac, ∞

• Can delete a ray when its flux drops 
below some fraction of the UVB for 
local UV feedback. All development in

https://bitbucket.org/enzo
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OVERCOMING O(NSTAR) :: RAY / SOURCE MERGING

• Sources are grouped on a binary 
tree.

• On each leaf, a “super-source” is 
created that has the center of 
luminosity.

• After the ray travel ~3-5 times the 
source separation, the rays 
merge.

• Recursive.

• Have run simulations with 25k 
point sources.

Okamoto et al. (2011)
Wise & Abel (in prep)
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SIMULATION SETUP: POP III → II 
TRANSITION AND GALAXY FORMATION
• Small-scale (1 comoving Mpc3) AMR radiation hydro simulation 

with Pop II+III star formation and feedback (1000 cm-3 threshold)

• Self-consistent Population III to II transition at 10-4 Z⊙

• Coupled radiative transfer (ray tracing: optically thin and thick 
regimes)

• 1800 M⊙ mass resolution, 0.1 pc maximal spatial resolution

• Assume a Kroupa-like IMF for Pop III stars with mass-dependent 
luminosities, lifetimes, and endpoints.

Wise, Turk, Norman, & Abel (2012)
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MASS-TO-LIGHT RATIOS

Scatter at low-mass caused by environment and different Pop III endpoints

M < 108 M⊙ halos
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• Isolated halo (8e7 
M⊙) at z=7

•Quiet recent merger 
history

•Disky, not irregular

•Steady increase in 
[Z/H] then plateau

•No stars with [Z/H] 
< -3 from Pop III 
metal enrichment
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•Most massive halo 
(109 M⊙) at z=7

•Undergoing a major 
merger

•Bi-modal metallicity 
distribution function

•2% of stars with   
[Z/H] < -3

• Induced SF makes 
less metal-poor stars 
formed near SN 
blastwaves
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Z-L RELATION IN 
LOCAL DWARF 

GALAXIES

• Average metallicity in a 
106 L⊙ galaxy is [Fe/H] 
~ –2

• Useful constraint of 
high-redshift galaxies, if 
we assume that this 
metal-poor population 
was formed during 
reionization.

Kirby+ (2011)

Friday, 14 December 12



VARYING THE SUBGRID MODELS

Mchar = 40 M⊙ No H2 cooling (i.e. minihalos)

Zcrit = 10-5 and 10-6 Z⊙ No Pop III SF

Redshift dependent 
Lyman-Werner background (LWB)

Supersonic streaming velocities

LWB + Metal cooling
LWB + Metal cooling + 

enhanced metal ejecta (y=0.025)

LWB + Metal cooling + radiation pressureLWB + Metal cooling + radiation pressure
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STAR FORMATION RATES

Pop II

Pop III
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RADIATION PRESSURE FROM 
CONTINUUM ABSORPTION

JHW+ (2012 MNRAS v427)

• Acceleration is added to the cell from the absorbed radiation 
(hydrogen- and helium-ionizing and X-rays).

• where dP is the number of photons absorbed in the cell.

• In Enzo+Moray, acceleration from radiation is saved as 3 more grid 
fields.

dprp =
dP E�

c
r̂ darp =

dprp

dt ⇢Vcell

H
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RADIATION PRESSURE FROM 
CONTINUUM ABSORPTION

JHW+ (2012 MNRAS v427)

• Acceleration is added to the cell from the absorbed radiation 
(hydrogen- and helium-ionizing and X-rays).

• where dP is the number of photons absorbed in the cell.

• In Enzo+Moray, acceleration from radiation is saved as 3 more grid 
fields.

dprp =
dP E�

c
r̂ darp =

dprp

dt ⇢Vcell

e-

H+
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RADIATION PRESSURE FROM 
CONTINUUM ABSORPTION

JHW+ (2012 MNRAS v427)

• Radiation pressure on dust grains increases the momentum transfer 
by the number of absorptions for a single photon, ftrap. For many 
scatterings, ftrap ~ v/c.

• Krumholz & Thompson (2012) found that ftrap ≈ Σagrav/(Fo/c) - 1 and 
is lower than the IR optical depth.

• We do not consider dust in this calculation, but τIR ≪ 1 in this 
simulation.
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EFFECTS OF RADIATION PRESSURE
MVIR = 3 X 108 M⊙ GALAXY AT z = 8
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EFFECTS OF RADIATION PRESSURE
 AVG. METALLICITIES IN DENSITY-TEMPERATURE SPACE
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H2 cooling to T ~ 1000 K.  
Local UV radiation field 

prevents cooling to 300 K.

Metal-rich ejecta “trapped” in cold, dense 
gas.  Little mixing.

Radiation pressure aids 
in dispersing metals to 

the ISM.

JHW+ (2012 MNRAS v427)
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BASELINE AT z = 8

Main Limitation:

lacking

Metal cooling
Soft UV background

JHW+ (2012 MNRAS v427)
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+ METAL COOLING & SOFT UVB
(Re-)introducing typical 

overcooling
problem during

initial star formation at
M ~ 108 M⊙

Causes over-enrichment – 
nearly solar metallicities.  

Doesn’t match with 
z = 0 dwarfs, but this 

could be incorporated 
into a bulge

Katz+ (1996) plus many more...

JHW+ (2012 MNRAS v427)
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SOFT UVB + METAL COOLING + RAD. PRESSURE

Momentum transfer
from ionizing radiation

No treatment of radiation 
pressure on dust → lower 

limit on its effects

SF decreases because 
dense gas is further 

dispersed.

Enhanced metal mixing, 
resulting in an average 
metallicity of 10-2 Z⊙

Haehnelt (1995) 
Murray, Quataert, & Thompson + TQM (2005)

JHW+ (2012 MNRAS v427)
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EFFECTS OF RADIATION PRESSURE
METALLICITY DISTRIBUTION FUNCTIONS

Feedback from 
radiation pressure 
more effectively 

disperses metal-rich 
ejecta and produces a 
galaxy on the mass-
metallicity relation

JHW+ (2012 MNRAS v427)
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EFFECTS OF RADIATION PRESSURE
RADIAL VELOCITIES (OVERCOOLING → DECREASED SF)

•Reverses infall, increases 
turbulent motions, and 
decreases SF in the inner 
100 pc.

• In rad. pressure simulations,

compared to 25% without it.

vrms ⇠ Vc

JHW+ (2012 MNRAS v427)
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• Pop III supernova feedback enriches the first galaxies to a nearly 
uniform 10-3 Z⊙ but is the demise of Pop III stars.

• The gas depletion, IGM pre-heating, and chemical enrichment all 
have impacts on the properties of the first galaxies.

• Radiation pressure plays an important role in regulating star 
formation in the first galaxies through driving turbulence and 
allowing SN feedback drive outflows more efficiently.

SUMMARY
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