THE ROLE OF RADIATION PRESSURE IN HIGH-Z DWARF GALAXIES

John Wise (Georgia Tech)
Tom Abel (Stanford), Michael Norman (UC San Diego), Britton Smith (Michigan State), Matthew Turk (Columbia)
OUTLINE

• Enzo+Moray: Adaptive ray tracing and merging
• Pop III → II transition and dwarf galaxy formation
• The role of radiation pressure in dwarf galaxies
RADIATION TRANSPORT BY RAY TRACING
RT Equation along a Ray

- Consider point sources of radiation

- Initially, the radiation flux is split equally among all rays.

\[
\frac{1}{c} \frac{\partial P}{\partial t} + \frac{\partial P}{\partial r} = -\kappa P
\]

- \(P := \) photon flux in the ray
Adaptive Ray Tracing (Enzo+Moray)

- Ray directions and splitting based on HEALPix (Gorski et al. 2005)
- Coupled with (magneto-) hydrodynamics of Enzo
- Rays are split into 4 child rays when the solid angle is large compared to the cell face area
- Well-suited for AMR
- Can calculate the photo-ionization rates so that the method is photon conserving.
- MPI/OpenMP hybrid parallelized.

All development in https://bitbucket.org/enzo
Adaptive Ray Tracing (Enzo+Moray)

Abel & Wandelt (2002)
Wise & Abel (2011)

• H + He ionization (heating)
• X-rays (secondary ionizations)
• Lyman-Werner transfer (based on Draine & Bertoldi shielding function)
• Choice between energy discretization and general spectral shapes (column density lookup tables, see C²-Ray)
• See Mirocha+ (2012) for optimized choices for energy bins.
• Radiation pressure from continuum
• Choice between \(c = A_c, \infty \)
• Can delete a ray when its flux drops below some fraction of the UVB for local UV feedback.

All development in https://bitbucket.org/enzo
OVERCOMING $O(N_{\text{STAR}})$:: RAY / SOURCE MERGING

- Sources are grouped on a binary tree.
- On each leaf, a “super-source” is created that has the center of luminosity.
- After the ray travel ~3-5 times the source separation, the rays merge.
- Recursive.
- Have run simulations with 25k point sources.

Okamoto et al. (2011)
Wise & Abel (in prep)
OVERCOMING $O(N_{\text{star}})$:: RAY / SOURCE MERGING

- Sources are grouped on a binary tree.
- On each leaf, a “super-source” is created that has the center of luminosity.
- After the ray travel ~3-5 times the source separation, the rays merge.
- Recursive.
- Have run simulations with 25k point sources.

Okamoto et al. (2011)
Wise & Abel (in prep)
Sources are grouped on a binary tree.

On each leaf, a “super-source” is created that has the center of luminosity.

After the ray travel ~3-5 times the source separation, the rays merge.

Recursive.

Have run simulations with 25k point sources.
Overcoming $O(N_{\text{star}})$:: Ray / Source Merging

• Sources are grouped on a binary tree.

• On each leaf, a “super-source” is created that has the center of luminosity.

• After the ray travel ~3-5 times the source separation, the rays merge.

• Recursive.

• Have run simulations with 25k point sources.

Okamoto et al. (2011)
Wise & Abel (in prep)
OVERCOMING $O(N_{\text{STAR}})$:: Ray / Source Merging

• Sources are grouped on a binary tree.
• On each leaf, a “super-source” is created that has the center of luminosity.
• After the ray travel ~3-5 times the source separation, the rays merge.
• Recursive.
• Have run simulations with 25k point sources.

Okamoto et al. (2011)
Wise & Abel (in prep)
OVERCOMING $O(N_{\text{STAR}})$:: RAY / SOURCE MERGING

- Sources are grouped on a binary tree.
- On each leaf, a “super-source” is created that has the center of luminosity.
- After the ray travel ~3-5 times the source separation, the rays merge.
- Recursive.
- Have run simulations with 25k point sources.

Okamoto et al. (2011)
Wise & Abel (in prep)
OVERCOMING $O(N_{\text{star}})$:: RAY / SOURCE MERGING

- Sources are grouped on a binary tree.
- On each leaf, a “super-source” is created that has the center of luminosity.
- After the ray travel ~3-5 times the source separation, the rays merge.
- Recursive.
- Have run simulations with 25k point sources.

Okamoto et al. (2011)
Wise & Abel (in prep)
OVERCOMING $O(N_{\text{STAR}})$:: RAY / SOURCE MERGING

- Sources are grouped on a binary tree.
- On each leaf, a “super-source” is created that has the center of luminosity.
- After the ray travel ~3-5 times the source separation, the rays merge.
- Recursive.
- Have run simulations with 25k point sources.
SIMULATION SETUP: POP III \rightarrow II
TRANSITION AND GALAXY FORMATION

- Small-scale (1 comoving Mpc3) AMR radiation hydro simulation with Pop II+III star formation and feedback (1000 cm$^{-3}$ threshold)
- Self-consistent Population III to II transition at 10^{-4} Z$_\odot$
- Coupled radiative transfer (ray tracing: optically thin and thick regimes)
- 1800 M$_\odot$ mass resolution, 0.1 pc maximal spatial resolution
- Assume a Kroupa-like IMF for Pop III stars with mass-dependent luminosities, lifetimes, and endpoints.

\[f(\log M) = M^{-1.3} \exp \left[- \left(\frac{M_{\text{char}}}{M} \right)^{1.6} \right], \quad M_{\text{char}} = 100M_\odot \]
FoV = 1 c.m. Mpc
Pop III Metals

Pop II Metals

Temperature

Density

FoV = 1 c.m. Mpc

Friday, 14 December 12
Scatter at low-mass caused by environment and different Pop III endpoints

$M < 10^8 \, M_\odot$ halos
MASS-TO-LIGHT RATIOS

Scatter at low-mass caused by environment and different Pop III endpoints

$M < 10^8 \, M_\odot$ halos
• Isolated halo ($8 \times 10^7 \, M_\odot$) at $z=7$
• Quiet recent merger history
• Disky, not irregular
• Steady increase in $[Z/H]$ then plateau
• No stars with $[Z/H] < -3$ from Pop III metal enrichment
• Most massive halo ($10^9 \, M_\odot$) at $z=7$
• Undergoing a major merger
• Bi-modal metallicity distribution function
• 2% of stars with $[Z/H] < -3$
• Induced SF makes less metal-poor stars formed near SN blastwaves
Z-L RELATION IN LOCAL DWARF GALAXIES

- Average metallicity in a $10^6 \, L_\odot$ galaxy is $[\text{Fe/H}] \sim -2$

- Useful constraint of high-redshift galaxies, if we assume that this metal-poor population was formed during reionization.
VARYING THE SUBGRID MODELS

<table>
<thead>
<tr>
<th>$M_{\text{char}} = 40 , M_\odot$</th>
<th>No H_2 cooling (i.e. minihalos)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$Z_{\text{crit}} = 10^{-5}$ and $10^{-6} , Z_\odot$</td>
<td>No Pop III SF</td>
</tr>
<tr>
<td>Redshift dependent Lyman-Werner background (LWB)</td>
<td>Supersonic streaming velocities</td>
</tr>
<tr>
<td>LWB + Metal cooling</td>
<td>LWB + Metal cooling + enhanced metal ejecta ($y=0.025$)</td>
</tr>
<tr>
<td>LWB + Metal cooling + radiation pressure</td>
<td></td>
</tr>
</tbody>
</table>
RADIATION PRESSURE FROM CONTINUUM ABSORPTION

- Acceleration is added to the cell from the absorbed radiation (hydrogen- and helium-ionizing and X-rays).

\[dp_{rp} = \frac{dP E_\gamma}{c} \hat{r} \]
\[da_{rp} = \frac{dp_{rp}}{dt \rho V_{cell}} \]

- where \(dP \) is the number of photons absorbed in the cell.

- In Enzo+Moray, acceleration from radiation is saved as 3 more grid fields.
RADIATION PRESSURE FROM CONTINUUM ABSORPTION

- Acceleration is added to the cell from the absorbed radiation (hydrogen- and helium-ionizing and X-rays).

\[
d\mathbf{p}_{\text{rp}} = \frac{dP}{c} \mathbf{\hat{r}}
\]

- where \(dP\) is the number of photons absorbed in the cell.

- In Enzo+Moray, acceleration from radiation is saved as 3 more grid fields.

\[
p_\gamma = \frac{E}{c}
\]

Friday, 14 December 12
RADIATION PRESSURE FROM CONTINUUM ABSORPTION

• Acceleration is added to the cell from the absorbed radiation (hydrogen- and helium-ionizing and X-rays).

\[\frac{dp_{rp}}{dt} = \frac{dP E^\gamma}{c} \hat{r} \]

\[da_{rp} = \frac{dp_{rp}}{dt \rho V_{cell}} \]

• where \(dP \) is the number of photons absorbed in the cell.

• In Enzo+Moray, acceleration from radiation is saved as 3 more grid fields.
RADIATION PRESSURE FROM CONTINUUM ABSORPTION

- Radiation pressure on dust grains increases the momentum transfer by the number of absorptions for a single photon, f_{trap}. For many scatterings, $f_{\text{trap}} \sim v/c$.

- Krumholz & Thompson (2012) found that $f_{\text{trap}} \approx \Sigma a_{\text{grav}}/(F_0/c) - 1$ and is lower than the IR optical depth.

- We do not consider dust in this calculation, but $\tau_{\text{IR}} \ll 1$ in this simulation.
EFFECTS OF RADIATION PRESSURE

$M_{\text{vir}} = 3 \times 10^8 M_\odot$ GALAXY AT $z = 8$

- Base
- Metal cooling
- Rad. pressure

Temperature [K]
- 10^4
- 10^3
- 10^{-1}
- 10^{-2}
- 10^{-3}
- 10^{-4}

Density [g/cm3]
- 10^{-26}
- 10^{-24}
- 10^{-22}
EFFECTS OF RADIATION PRESSURE

AVG. METALLICITIES IN DENSITY-TEMPERATURE SPACE

\[
\begin{array}{cccc}
10^{-28} & 10^{-26} & 10^{-24} & 10^{-22} \\
10^{1} & 10^{2} & 10^{3} & 10^{4} \\
10^{5} & 10^{6} & 10^{7} & \\
\end{array}
\]

\[
\begin{array}{cccc}
10^{-28} & 10^{-26} & 10^{-24} & 10^{-22} \\
10^{1} & 10^{2} & 10^{3} & 10^{4} \\
10^{5} & 10^{6} & 10^{7} & \\
\end{array}
\]

\[
\begin{array}{cccc}
10^{-28} & 10^{-26} & 10^{-24} & 10^{-22} \\
10^{1} & 10^{2} & 10^{3} & 10^{4} \\
10^{5} & 10^{6} & 10^{7} & \\
\end{array}
\]

\[
\begin{array}{cccc}
10^{-28} & 10^{-26} & 10^{-24} & 10^{-22} \\
10^{1} & 10^{2} & 10^{3} & 10^{4} \\
10^{5} & 10^{6} & 10^{7} & \\
\end{array}
\]

\[
\begin{array}{cccc}
10^{-28} & 10^{-26} & 10^{-24} & 10^{-22} \\
10^{1} & 10^{2} & 10^{3} & 10^{4} \\
10^{5} & 10^{6} & 10^{7} & \\
\end{array}
\]

H$_2$ cooling to $T \sim 1000$ K. Local UV radiation field prevents cooling to 300 K.

Metal-rich ejecta “trapped” in cold, dense gas. Little mixing.

Radiation pressure aids in dispersing metals to the ISM.

JHW+ (2012 MNRAS v427)
BASELINE AT $z = 8$

Main Limitation:

- Lacking metal cooling
- Soft UV background
(Re-)introducing typical overcooling problem during initial star formation at $M \sim 10^8 M_\odot$

Causes over-enrichment – nearly solar metallicities.

Doesn’t match with $z = 0$ dwarfs, *but* this could be incorporated into a bulge.
SOFT UVB + METAL COOLING + RAD. PRESSURE

Momentum transfer from ionizing radiation

No treatment of radiation pressure on dust → lower limit on its effects

SF decreases because dense gas is further dispersed.

Enhanced metal mixing, resulting in an average metallicity of $10^{-2} Z_\odot$
Feedback from radiation pressure more effectively disperses metal-rich ejecta and produces a galaxy on the mass-metallicity relation.
Slice of acceleration due to momentum transfer from ionizing photons only, i.e. not including dust opacity.
Slice of acceleration due to momentum transfer from ionizing photons only, i.e. not including dust opacity
EFFECTS OF RADIATION PRESSURE
RADIAL VELOCITIES (OVERCOOLING \rightarrow DECREASED SF)

- Reverses infall, increases turbulent motions, and decreases SF in the inner 100 pc.

- In rad. pressure simulations, $v_{\text{rms}} \sim V_c$

 compared to 25% without it.
SUMMARY

• Pop III supernova feedback enriches the first galaxies to a nearly uniform $10^{-3} \, Z_{\odot}$ but is the demise of Pop III stars.

• The gas depletion, IGM pre-heating, and chemical enrichment all have impacts on the properties of the first galaxies.

• Radiation pressure plays an important role in regulating star formation in the first galaxies through driving turbulence and allowing SN feedback drive outflows more efficiently.