

THE ROLE OF RADIATION PRESSURE IN HIGH-Z DWARF GALAXIES

John Wise (Georgia Tech)

Tom Abel (Stanford), Michael Norman (UC San Diego), Britton Smith (Michigan State), Matthew Turk (Columbia) CRTW 2012

14 Dec 2012

OUTLINE

- Enzo+Moray: Adaptive ray tracing and merging
- Pop III → II transition and dwarf galaxy formation
- The role of radiation pressure in dwarf galaxies

RAY TRACING

RT Equation along a Ray

- Consider point sources of radiation
- Initially, the radiation flux is split equally among all rays.

$$\frac{1}{c}\frac{\partial P}{\partial t} + \frac{\partial P}{\partial r} = -\kappa P$$

• P := photon flux in the ray

Adaptive Ray Tracing (Enzo+Moray)

- Ray directions and splitting based on HEALPix (Gorski et al. 2005)
- Coupled with (magneto-) hydrodynamics of Enzo
- Rays are split into 4 child rays when the solid angle is large compared to the cell face area
- Well-suited for AMR
- Can calculate the photo-ionization rates so that the method is photon conserving.
- MPI/OpenMP hybrid parallelized.

All development in <u>https://bitbucket.org/enzo</u>

Adaptive Ray Tracing (Enzo+Moray)

- H + He ionization (heating)
- X-rays (secondary ionizations)
- Lyman-Werner transfer (based on Draine & Bertoldi shielding function)
- Choice between energy discretization and general spectral shapes (column density lookup tables, see C²-Ray)
- See Mirocha+ (2012) for optimized choices for energy bins.
- Radiation pressure from continuum
- Choice between c = Ac, ∞
- Can delete a ray when its flux drops below some fraction of the UVB for local UV feedback.

All development in <u>https://bitbucket.org/enzo</u>

- Sources are grouped on a binary tree.
- On each leaf, a "super-source" is created that has the center of luminosity.
- After the ray travel ~3-5 times the source separation, the rays merge.
- Recursive.
- Have run simulations with 25k point sources.

- Sources are grouped on a binary tree.
- On each leaf, a "super-source" is created that has the center of luminosity.
- After the ray travel ~3-5 times the source separation, the rays merge.
- Recursive.
- Have run simulations with 25k point sources.

- Sources are grouped on a binary tree.
- On each leaf, a "super-source" is created that has the center of luminosity.
- After the ray travel ~3-5 times the source separation, the rays merge.
- Recursive.
- Have run simulations with 25k point sources.

- Sources are grouped on a binary tree.
- On each leaf, a "super-source" is created that has the center of luminosity.
- After the ray travel ~3-5 times the source separation, the rays merge.
- Recursive.
- Have run simulations with 25k point sources.

- Sources are grouped on a binary tree.
- On each leaf, a "super-source" is created that has the center of luminosity.
- After the ray travel ~3-5 times the source separation, the rays merge.
- Recursive.
- Have run simulations with 25k point sources.

- Sources are grouped on a binary tree.
- On each leaf, a "super-source" is created that has the center of luminosity.
- After the ray travel ~3-5 times the source separation, the rays merge.
- Recursive.
- Have run simulations with 25k point sources.

- Sources are grouped on a binary tree.
- On each leaf, a "super-source" is created that has the center of luminosity.
- After the ray travel ~3-5 times the source separation, the rays merge.
- Recursive.
- Have run simulations with 25k point sources.

- Sources are grouped on a binary tree.
- On each leaf, a "super-source" is created that has the center of luminosity.
- After the ray travel ~3-5 times the source separation, the rays merge.
- Recursive.
- Have run simulations with 25k point sources.

Wise, Turk, Norman, & Abel (2012)

SIMULATION SETUP: POP III → II TRANSITION AND GALAXY FORMATION

- Small-scale (I comoving Mpc³) AMR radiation hydro simulation with Pop II+III star formation and feedback (1000 cm⁻³ threshold)
- Self-consistent Population III to II transition at 10-4 Z_{\odot}
- Coupled radiative transfer (ray tracing: optically thin and thick regimes)
- 1800 M_☉ mass resolution, 0.1 pc maximal spatial resolution
- Assume a Kroupa-like IMF for Pop III stars with mass-dependent luminosities, lifetimes, and endpoints.

$$f(\log M) = M^{-1.3} \exp\left[-\left(\frac{M_{\rm char}}{M}\right)^{1.6}\right], \quad M_{\rm char} = 100 M_{\odot}$$

10 kpc

Pop II Metals

Density

FoV = 1 c.m. Mpc

MASS-TO-LIGHT RATIOS

MASS-TO-LIGHT RATIOS

Wise, Turk, Norman, & Abel (2012)

- Isolated halo (8e7
 M_☉) at z=7
- Quiet recent merger history
- Disky, not irregular
- Steady increase in
 [Z/H] then plateau
- No stars with [Z/H]
 -3 from Pop III
 metal enrichment

Most massive halo
 (10⁹ M_☉) at z=7

- Undergoing a major merger
- Bi-modal metallicity distribution function
- 2% of stars with [Z/H] < -3
- Induced SF makes
 less metal-poor stars
 formed near SN
 blastwaves

Z-L RELATION IN LOCAL DWARF GALAXIES

- Average metallicity in a 10⁶ L_☉ galaxy is [Fe/H]
 ~ -2
- Useful constraint of high-redshift galaxies, if we assume that this metal-poor population was formed during reionization.

VARYING THE SUBGRID MODELS

$M_{char} = 40 M_{\odot}$	No H ₂ cooling (i.e. minihalos)
$Z_{crit} = 10^{-5} \text{ and } 10^{-6} Z_{\odot}$	No Pop III SF
Redshift dependent Lyman-Werner background (LWB)	Supersonic streaming velocities
LWB + Metal cooling	LWB + Metal cooling + enhanced metal ejecta (y=0.025)
LWB + Metal cooling + radiation pressure	

STAR FORMATION RATES

RADIATION PRESSURE FROM CONTINUUM ABSORPTION

 Acceleration is added to the cell from the absorbed radiation (hydrogen- and helium-ionizing and X-rays).

$$d\mathbf{p}_{\rm rp} = \frac{dP E_{\gamma}}{c} \,\hat{\mathbf{r}} \qquad d\mathbf{a}_{\rm rp} = \frac{d\mathbf{p}_{\rm rp}}{dt \,\rho \, V_{\rm cell}}$$

- where dP is the number of photons absorbed in the cell.
- In Enzo+Moray, acceleration from radiation is saved as 3 more grid fields.

RADIATION PRESSURE FROM CONTINUUM ABSORPTION

 Acceleration is added to the cell from the absorbed radiation (hydrogen- and helium-ionizing and X-rays).

$$d\mathbf{p}_{\rm rp} = \frac{dP E_{\gamma}}{c} \,\hat{\mathbf{r}} \qquad d\mathbf{a}_{\rm rp} = \frac{d\mathbf{p}_{\rm rp}}{dt \,\rho \, V_{\rm cell}}$$

- where dP is the number of photons absorbed in the cell.
- In Enzo+Moray, acceleration from radiation is saved as 3 more grid fields.

RADIATION PRESSURE FROM CONTINUUM ABSORPTION

 Acceleration is added to the cell from the absorbed radiation (hydrogen- and helium-ionizing and X-rays).

$$d\mathbf{p}_{\rm rp} = \frac{dP E_{\gamma}}{c} \,\hat{\mathbf{r}} \qquad d\mathbf{a}_{\rm rp} = \frac{d\mathbf{p}_{\rm rp}}{dt \,\rho \, V_{\rm cell}}$$

- where dP is the number of photons absorbed in the cell.
- In Enzo+Moray, acceleration from radiation is saved as 3 more grid fields.

RADIATION PRESSURE FROM CONTINUUM ABSORPTION

- Radiation pressure on dust grains increases the momentum transfer by the number of absorptions for a single photon, *f*_{trap}. For many scatterings, *f*_{trap} ~ v/c.
- Krumholz & Thompson (2012) found that $f_{trap} \approx \Sigma a_{grav}/(F_o/c) 1$ and is lower than the IR optical depth.
- We do not consider dust in this calculation, but $\tau_{\text{IR}} \ll 1$ in this simulation.

EFFECTS OF RADIATION PRESSURE $M_{VIR} = 3 \times 10^8 M_{\odot}$ GALAXY AT z = 8

EFFECTS OF RADIATION PRESSURE AVG. METALLICITIES IN DENSITY-TEMPERATURE SPACE

BASELINE AT z = 8

Main Limitation:

lacking Metal cooling Soft UV background

+ METAL COOLING & SOFT UVB

SOFT UVB + METAL COOLING + RAD. PRESSURE

EFFECTS OF RADIATION PRESSURE METALLICITY DISTRIBUTION FUNCTIONS

Feedback from radiation pressure more effectively disperses metal-rich ejecta and produces a galaxy on the massmetallicity relation Slice of acceleration due to momentum transfer from ionizing photons only, i.e. not including dust opacity

Slice of acceleration due to momentum transfer from ionizing photons only, i.e. not including dust opacity

0.01

0.1

 $10^{6} 10^{-4}$ 10^{-24} 10^{-23} 10^{-22} 10^{3} 10^{-2} 10^{4} 10^{5} 10^{0} $Density(g/cm^3)$ Temperature(K) Metallicity($Z \odot$)

EFFECTS OF RADIATION PRESSURE RADIAL VELOCITIES (OVERCOOLING → DECREASED SF)

- Reverses infall, increases turbulent motions, and decreases SF in the inner 100 pc.
- In rad. pressure simulations, $v_{\rm rms} \sim V_c$ compared to 25% without it.

Friday, 14 December 12

SUMMARY

- Pop III supernova feedback enriches the first galaxies to a nearly uniform $10^{-3} Z_{\odot}$ but is the demise of Pop III stars.
- The gas depletion, IGM pre-heating, and chemical enrichment all have impacts on the properties of the first galaxies.
- Radiation pressure plays an important role in regulating star formation in the first galaxies through driving turbulence and allowing SN feedback drive outflows more efficiently.