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OUTLINE

* Enzo+Moray: Adaptive ray tracing and merging
* Pop Il = |l transrtion and dwart galaxy formation

* he role of radiation pressure in dwartf galaxies
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R T Equation along a Ray

e Consider point sources of radiation

e |nitially, the radiation flux is split equally among all rays.
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Adaptive Ray Tracing (Enzo+Moray) Abel & Wandelt (2002)

Wise & Abel (2011)

e Ray directions and splitting based
on HEALPIx (Gorski et al. 2005) N \ \
e Coupled with (magneto-) \ \ \}\ \

hydrodynamics of Enzo

e Rays are split into 4 child rays
when the solid angle is large
compared to the cell face area

e \Well-suited for AMR

e Can calculate the photo-ionization 25
rates so that the method is photon
conserving.

e MPI/OpenMP hybrid parallelized.
All development in
https://bitbucket.org/enzo
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Adaptive Ray Tracing (Enzo+Moray) Abel & Wandelt (2002)

Wise & Abel (2011)

e H + He ionization (heating)

e X-rays (secondary ionizations) N \ \

e | yman-Werner transfer (based on \ \ \}\ \
Draine & Bertoldi shielding function)

e Choice between energy discretization
and general spectral shapes (column
density lookup tables, see C>-Ray)

e See Mirocha+ (2012) for optimized
choices for energy bins.

e Radiation pressure from continuum LN

e Choice between c = Ac, =

e Can delete a ray when its flux drops
below some fraction of the UVB for
local UV feedback. All development in

https://bitbucket.org/enzo
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RCOMING O(Nsmar) :: RAY / SOURCE MERGING

Okamoto et al. (2011)
Wise & Abel (in prep)

® 5Sources are grouped on a binary
tree.

® On each leaf, a “super-source” is

created that has the center of W .
luminosity. FUR SR w

® After the ray travel ~3-5 times the Ll N
source separation, the rays * %
merge. W R

e Recursive. Ko

® Have run simulations with 25k
point sources.
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SIMULATION S

- [U

Wise, Turk, Norman, & Abel (2012)

@i

TRANSITION AND GALAXY

-ORMATION

» Small-scale (I comoving Mpc?) AMR radiation hydro simulation
with Pop IlI+lll star formation and feedback (1000 cm=3 threshold)

» Self-consistent Population Ill to Il transition at 10 Ze

» Coupled radiative transfer (ray tracing: optically thin and thick

regimes)

* | 800 Mo mass resolution, 0.1 pc maximal spatial resolution

* Assume a Kroupa-like IMF for Pop lll stars with mass-dependent
luminosities, lifetimes, and endpoints.
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z=17.75

10 kpc
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FoV = | cm. Mpc
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MASS-TO-LIGHT RATIOS
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Wise, Turk, Norman, & Abel (2012)
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* [solated halo (8e/
M@) at z=/

Q@NE S recent merger
nistory

* Disky, not irregular

* Steady Increase In
//H] then plateau

* No stars with [Z/H]
< -3 from Pop Il

metal enrichment
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/- RELATION IN
LOCAL DWARF
GALAXIES

» Average metallicity in a
|0¢ Lo galaxy is [Fe/H]
=)

« Useful constraint of
high-redshift galaxies, It
we assume that this
metal-poor population
was formed during
relonization.
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VARYING TH

Mchar = 40 MG

Zcrit = |O_5 aﬂd |O_6 Z@

Redshift dependent

Lyman-VWWerner background (LWB)

LWB + Metal cooling
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No Pop Il SF

Supersonic streaming velocrties

cooling +

enhanced metal ejecta (y=0.025)

LWB + Metal cooling + radiation pressure
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STAR FORMATION RATES
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JHW+ (2012 MNRAS v427)

RADIATION PRESSURE FROM
CONTINUUM ABSORP TION

» Acceleration 1s added to the cell from the absorbed radiation
(hydrogen- and helium-ionizing and X-rays).
YR I

dp;
e dar — =
Prp e & 00 Ve

» where dP Is the number of photons absorbed in the cell.

* In Enzo+Moray, acceleration from radiation Is saved as 3 more grid
fields.
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JHW+ (2012 MNRAS v427)

RADIATION PRESSURE FROM
CONTINUUM ABSORP TION

» Acceleration 1s added to the cell from the absorbed radiation
(hydrogen- and helium-ionizing and X-rays).

dPE., .

dprp e

r
C

dPrp
dt p Veel

da,, =

» where dP Is the number of photons absorbed in the cell.

* In Enzo+Moray, acceleration from radiation Is saved as 3 more grid

fields.

1
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JHW+ (2012 MNRAS v427)

RADIATION PRESSURE FROM
CONTINUUM ABSORP TION

» Radiation pressure on dust grains increases the momentum transfer
by the number of absorptions for a single photon, fuap. FOr many
scatterings, fuap ~ V/C.

* Krumholz & Thompson (2012) found that fuap = 2dga/(Folc) - | and
s lower than the IR optical depth.

* We do not consider dust In this calculation, but TR < | In this
simulation.
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JHW+ (2012 MNRAS v427)

FFFECTS OF RADIATION PRESSURE

Mvir = 3 X 108 Mo GALAXY AT z = 8
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JHW+ (2012 MNRAS v427)

FFFECTS OF RADIATION PRESSURE
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JHW+ (2012 MNRAS v427)
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JHW+ (2012 MNRAS v427)

+ METAL COOLING & SOFT UVB
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(Re-)introducing typical
overcooling
problem during

iNrtial star formation at
M . |08 M@

Katz+ (1996) plus many more...

1 Causes over-enrichment —

nearly solar metallicities.

Doesn't match with
z = 0 dwarts, but this
could be incorporated
into a bulge
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JHW+ (2012 MNRAS v427)

SOFT UVB + METAL COOLING + RAD. PRESSURE
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JHW+ (2012 MNRAS v427)

FFFECTS OF RADIATION PRESSURE
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HW+ (2012 MNRAS v427)

FFFECTS OF RADIATION PRESSURF
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SUMMARY

» Pop Il supernova feedback enriches the first galaxies to a nearly
uniform 103 Zo but is the demise of Pop Il stars.

* [he gas depletion, IGM pre-heating, and chemical enrichment all
have iImpacts on the properties of the first galaxies.

» Radiation pressure plays an important role in regulating star
formation In the first galaxies through driving turbulence and
allowing SN feedback drive outflows more efficiently.




