Cosmological Radiative Transfer Comparison Project Workshop IV, The University of Texas at Austin, December 12-14, 2012

New Cosmological Hydrodynamic Code Developments

Jihye Shin¹, Juhan Kim², Sungsoo S. Kim¹, Suk-Jin Yoon³, & Changbom Park²

¹Department of Astronomy & Space Science, Kyung Hee University, Korea

²Korea Institute for Advanced Study, Korea

³Center for Space Astrophysics and Department of Astronomy, Yonsei University, Korea

Motivations – GCs as fossil records of galaxies

Globular star clusters (GCs)

- the oldest bound stellar system in the universe
- typical mass and size : ${\sim}10^5~M_{\odot}$ (${\sim}M_{v}{=}{-}5$ to ${-}10)$, a few parsecs
- The characteristics of GC systems are correlated with properties of their parent galaxies.
 : metal bimodality, specific frequency, size dist., radial dist., and so on

Motivations - GCs & Reionization

The previous studies on GCs & reionization

- 1. GC formation was suppressed by the reionization
 - Beasley et al. 2002, Santos 2003, Bekki 2005, Moore et al. 2006, Spitler et al. 2012
- 2. GCs reionized the universe
 - Ricotti 2002, Power et al. 2009, Schaerer & Charbonnel 2011, Griffen et al. 2012
- 3. GC formation was triggered by the reionization
 - Cen 2001, Hasegawa et al. 2009
- 4. GC formation rate using UV luminosity function
 - Katz & Ricotti 2012

Motivations

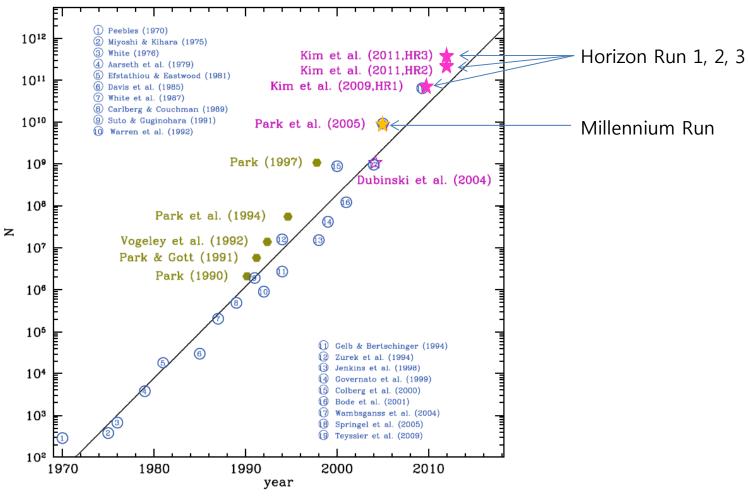
GCs to constrain the below

- the star formation and assembly histories of galaxies
- the nucleosynthetic processes governing chemical evolution
- the epoch and homogeneity of cosmic reionization
- the role of dark matter in the formation of structure in the early universe
- the distribution of dark matter in preset-day galaxies

Strategies

To simulate the sub-galactic scale structure formation in the Lambda CDM model,

we have developed a new cosmological hydrodynamic code.


- using the most efficient code (PM+tree) for the large scale structure, <u>GOTPM</u> (Dubinsky, Kim, & Park 2003),
- improved the hydrodynamics (SPH) into the GOTPM code (mainly by Juhan Kim)
- added the realistic baryonic physics (in preparation, Shin, Kim, & Kim 2013)
 - : Reionization process by UV background sources and UV shielding
 - : Radiative heating/cooling (T ~ reach to 100K)
 - : Star formation as single stellar population
 - : Metal, mass and energy feedback by $\mathsf{SN}_{\mathrm{II}}$

Targeted mass resolution is ~ $10^3 M_{sun}$

- : from globular clusters to galaxy groups (box size up to \sim 32 Mpc/h)
- : using zoom-in technique and powerful computer resources

- based on a hybrid scheme using the particle-mesh (PM) and Barnes-Hut (BH) oct-tree algorithm
- used for recent large-volume simulations : Horizon Run 1, 2, 3 (7210³ particles, 10.815 Gpc/h side length)

- based on a hybrid scheme using the particle-mesh (PM) and Barnes-Hut (BH) oct-tree algorithm
- used for recent large-volume simulations : Horizon Run 1, 2, 3 (7210³ particles, 10.815 Gpc/h side length)

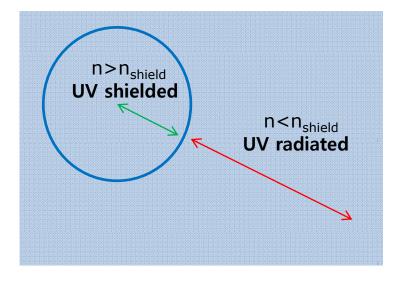
Kim et al. 2011

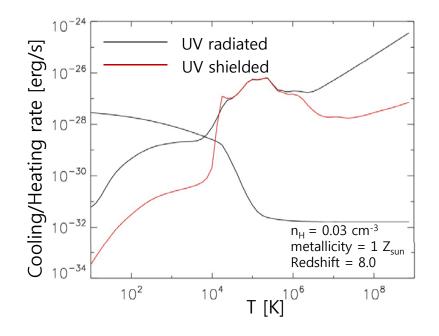
- A version of the Lagrangian scheme in the hydrodynamics
- Following the entropy-conservation method (Springel & Hernquist 2003)
- Efficient memory consumption : 104 byte/particle (152byte/particle, GADGET-2)
- Individual time-step based on the Kick-Drift-Kick scheme (Springel 2005)
- Glacial initial condition : random positioning of the baryonic matter $N_{baryon} = N_{total} \times (\Omega_{baryon} / \Omega_{matter})$

$$\begin{split} &-\rho_{l} = \sum_{j=1}^{N_{nbg}} m_{j} W(\overrightarrow{r_{l}} - \overrightarrow{r_{j}}, h_{l}), P_{l} = A_{l} \rho_{l}^{\gamma} = (\gamma - 1) \rho_{l} u_{l}, \\ &\frac{d\overrightarrow{v}}{dt}| = -\sum_{l=1}^{N_{nbg}} m_{j} \left[f_{l} \frac{P_{l}}{\rho_{l}^{2}} \nabla_{l} W_{lj}(h_{l}) + f_{j} \frac{P_{j}}{\rho_{j}^{2}} \nabla_{j} W_{lj}(h_{j}) + m_{j} \Pi_{lj} \nabla_{l} \overline{W_{lj}} \right], \\ &\frac{du_{l}}{dt} = f_{l} \frac{P_{l}}{\rho_{l}} \sum_{j=1}^{N_{nbg}} m_{j} (\overrightarrow{v_{l}} - \overrightarrow{v_{j}}) \cdot \nabla W_{lj}(h_{l}) + \frac{1}{2} \sum_{j=1}^{N_{nbg}} m_{j} \Pi_{lj} \overline{v_{lj}} \cdot \nabla W_{lj}(h_{l}), \\ &\Pi_{lj} = -\frac{\alpha}{2} \frac{(c_{l} + c_{j} - 3\omega_{lj})\omega_{lj}}{\rho_{lj}}, \\ &\Delta t^{SPH} = \frac{C_{courant} h_{l}}{max_{j}(c_{l} + c_{j} - 3\omega_{lj})}. \end{split}$$

Cooling/Heating

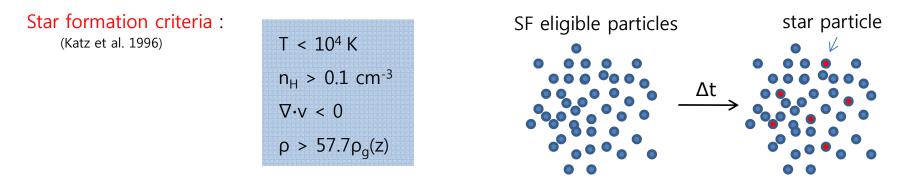
Including non-adiabatic process on the evolution of the baryons

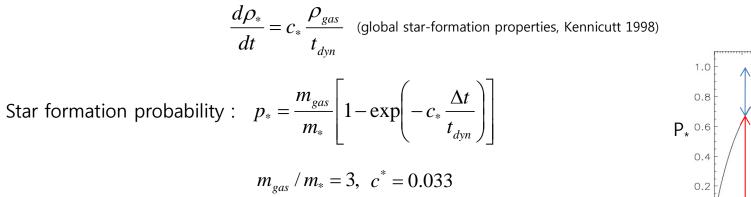

Using the publicly available photoionization package CLOUDY 90 (Ferland et al. 1998)


- functions of density, temperature, metallicity and redshift

Tabulating the cooling/heating rates as existence of the uniform UV/X-ray background (Haardt & Madau 2001)

- Average thermal evolution before and after the reionization (z=8.9)
 - : collisional ionization for z>8.9 and photoionization for z<8.9
- self-shielding from the UV background radiation (n_{shield}= 0.014 cm⁻³ following Tajiri & Umemura 1998)
 - $n_H < n_{shield}$: UV radiated medium


 $n_H > n_{shield}$: UV shielded medium



Star Formation

Converting gas particles into star particles

Star formation rate (c*): calibrated by the Schmidt-Kennicutt relation

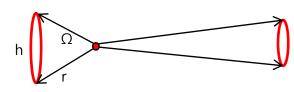
 $\begin{array}{c}
1.0\\
0.8\\
0.6\\
0.4\\
0.2\\
0.0\\
0 \\
1 \\
2 \\
3 \\
4 \\
5 \\
6 \\
c_* \Delta t/t_{dyn}
\end{array}$

Containing a single stellar population

- : Location, velocity, mass, metallicity inherited from the parent gas particles
- : Stellar mass function Kroupa (2001) with range of 0.1 M_{sun}~100 M_{sun}

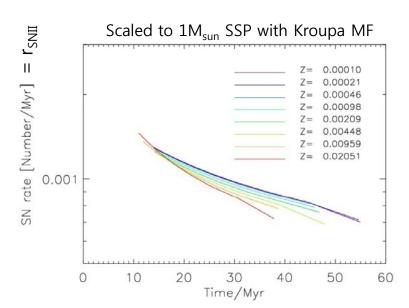
Feedback (SN_{II})

- Implementing feedback in a probabilistic manner


(Okamoto, Nemmen, and Bower 2008)

$$P_{SN} = \int_{t_{SSP,i}}^{t_{SSP,i}+dt} r_{SNII}(t') dt' / \int_{t_{SSP,i}}^{t_8} r_{SNII}(t') dt$$

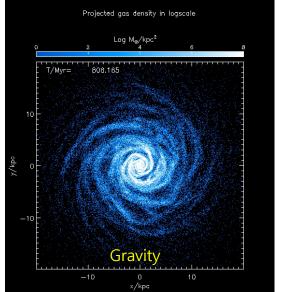
- Distributing feedback to neighbor gas particles
 - 1. energy feedback
 - ΔE of star particle : ~10^{51} erg/1 SN $_{\rm II}$

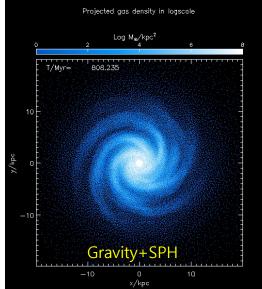


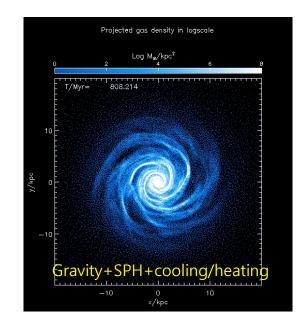
- leading to a self-regulated cycle for star formation activity
- 2. metal and mass feedbacks
 - released metal : $\Delta Z = \int \Psi(m) m_{ej,metal}(m,Z) dm / \Delta M_{SN}, m_{ej,metal}(m,Z)$ from Woosley & Weaver (1995)
 - proportional to solid angles of neighbors :

$$\Omega_{i} \propto h_{i}^{2} / r_{i}^{2} \propto n_{i}^{-2/3} / r_{i}^{2}$$
$$\Delta Z_{SN,i} = m_{i} n_{i}^{-2/3} r_{i}^{-2} \Delta Z_{SN} / \sum_{j=1}^{N} m_{j} n_{j}^{-2/3} r_{j}^{-2}$$

- metallicity-dependent heating/cooling



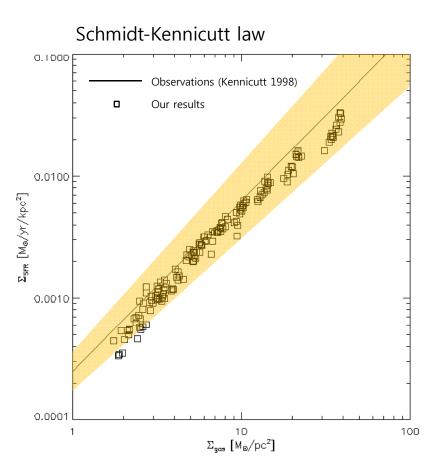

Test Run in Non-Cosmological Frame


Evolution of an isolated galaxy

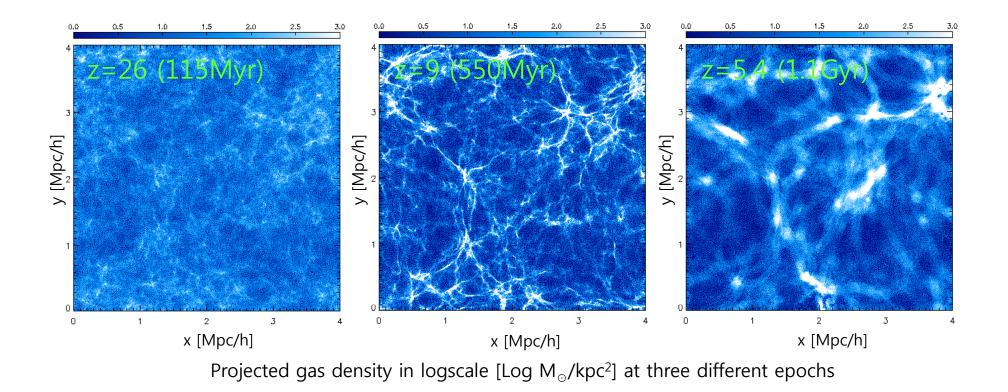
- to check how well the new implementation reproduce the Schmidt-Kennicutt law
- modified the GOTPM code to handle the non-expanding coordinate (scale length = constant)
- using a compound galaxy model as the initial condition for the test

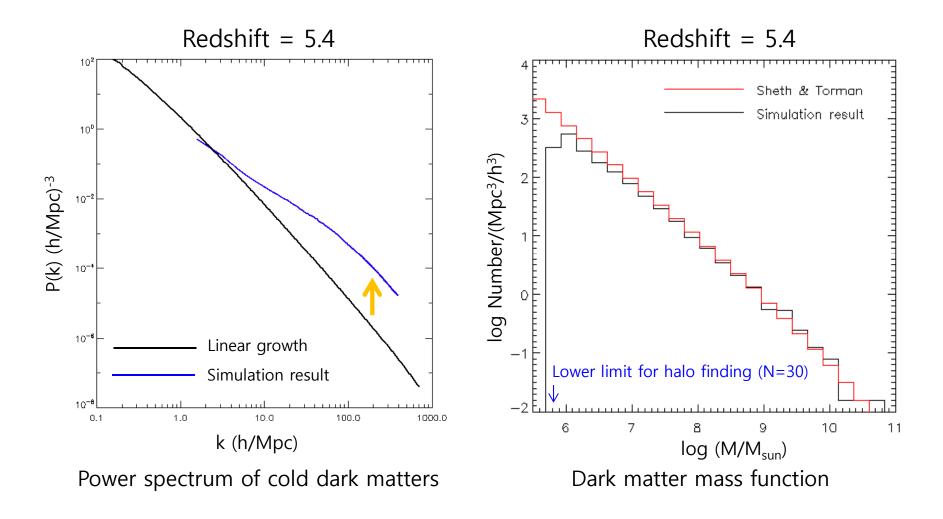
	Particle number	Particle mass	Potential model	Parameter
Gas disk	98304	4.196x10 ⁴ M _{sun}	Exponential Disk	M=4.125x10 ⁹ M _{sun} , z=0.3kpc, h=3.33kpc
Stellar disk	884736	4.196x10 ⁴ M _{sun}	Exponential Disk	M=3.715x10 ¹⁰ M _{sun} , z=0.3kpc, h=3.33kpc
Bulge	Fixed	-	Hernquist profile	M=1.375x10 ¹⁰ M _{sun} , a=0.8kpc
Halo	Fixed	-	Hernquist profile	M=2.2x10 ¹¹ M _{sun} , a=10kpc





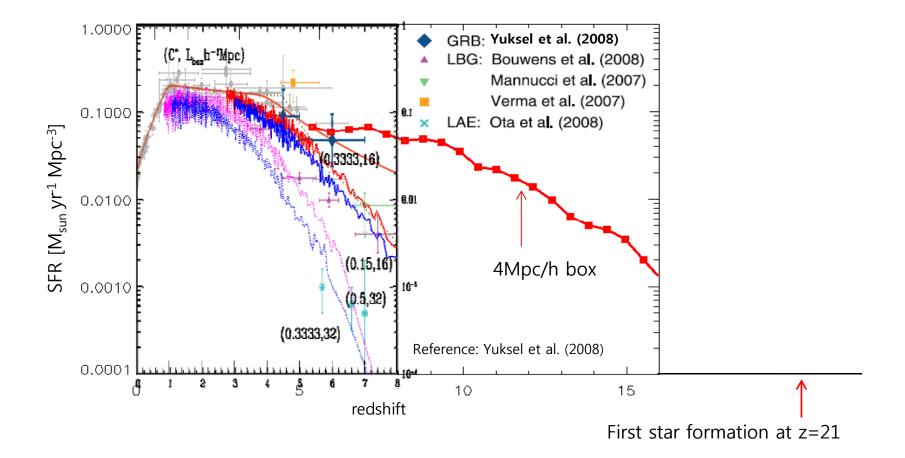
Initial conditions from ZENO by Barnes


Gravity + SPH + Cooling/Heating + SF + SN feedback

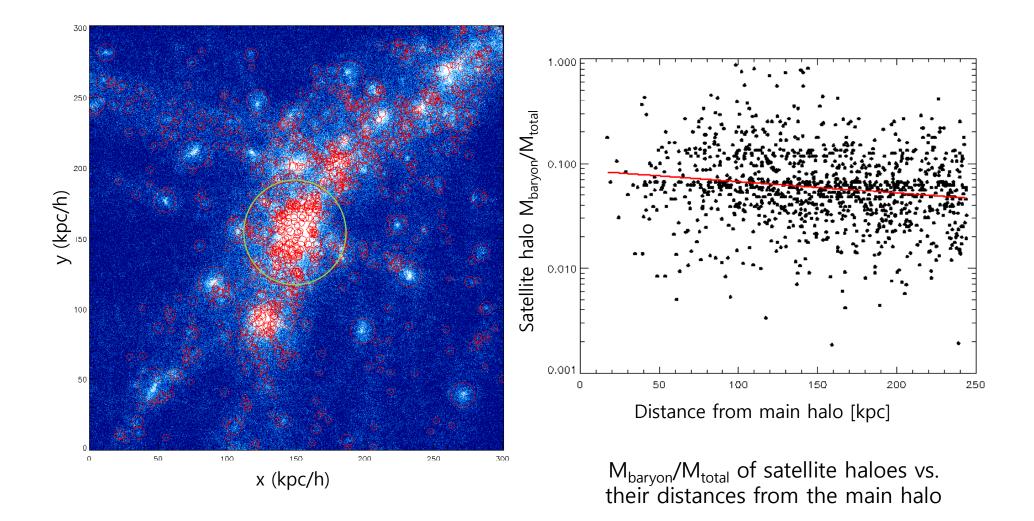


Test Runs in the Cosmological Frame

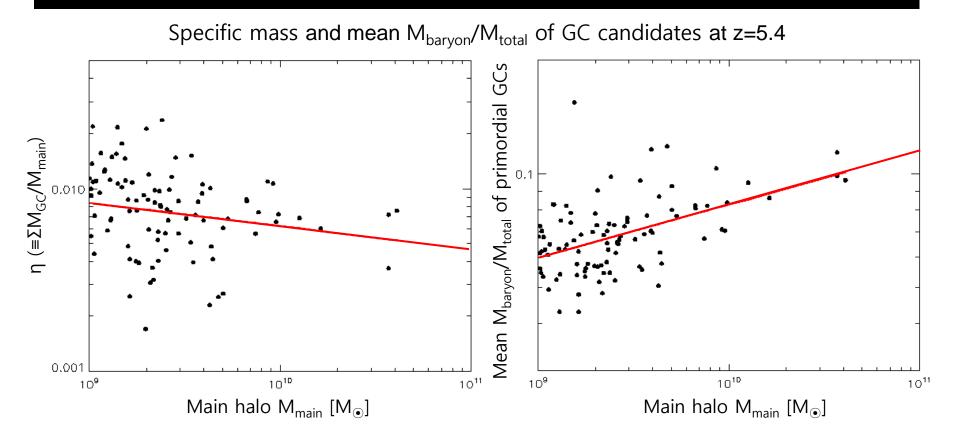
- We have performed a cosmological hydrodynamic simulation with the new code.
 - a cubic box with a side length of 4 Mpc/h with 512³ (130 million) particles
 - mass resolution ~ $3.4 \times 10^4 M_{\odot}$ (sub-galactic halos are resolved with more than hundred particles)
 - initial condition : p(k) at z = 150 (CAMB package) and initial displacement (Zel'dovich's approximation)
 - ACDM cosmology : WMAP-5th yr parameter (Ω_m =0.26, Ω_{Λ} =0.26, Ω_b =0.044, σ_8 =0.76, h=0.72)
 - used 64 cores for one month down to z=5.4



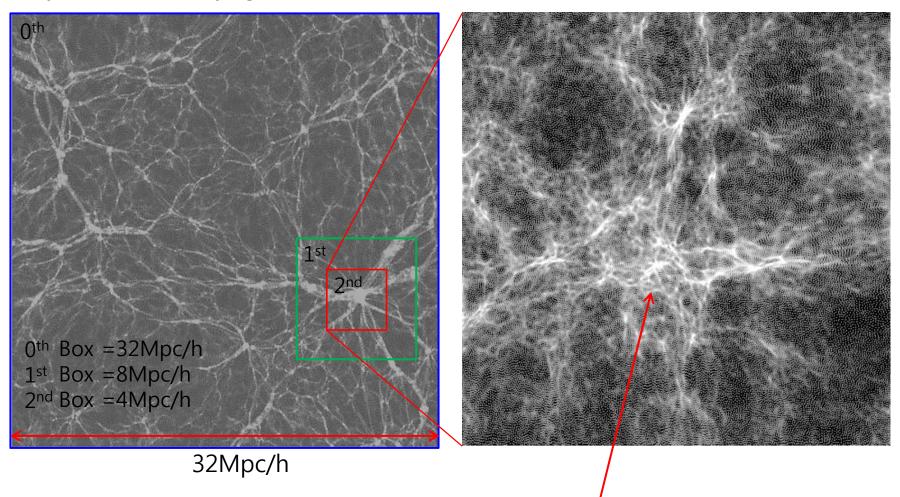
Comparison with theoretical predictions



Halo finding : Friend-of-Friend (FoF) & hierarchical FoF


Comparison with observations

Distribution of satellite halos around a ~10¹⁰ M $_{\odot}$ main halo at z = 5.4


Properties of Globular Cluster Candidates

- η (= $\Sigma M_{GC}/M_{main}$: Specific GC formation efficiency) of the main halos at z=5.4 is <u>~2 orders of</u> <u>magnitude larger</u> than the previous estimates of ~10⁻⁴-10⁻⁵ (Blakeslee 1999; Kravtsov & Gnedin 2005; Spitler & Forbes 2009).
- A large fraction of GCs around the main halo at z=5.4 will be <u>disrupted during the continuous</u> <u>accretion into the main halo</u> and <u>constitute the main halo</u>.

Zoom-in Simulation

We just finished applying zoom-in technique into the our new GOTPM+SPH code

Formation site of the Milky Way sized halo at z=0

The previous studies on GCs & reionization

- 1. GC formation was suppressed by the reionization
- Beasley et al. 2002, Santos 2003, Bekki 2005, Moore et al. 2006, Spitler et al. 2012
- 2. GCs reionized the universe
 - Ricotti 2002, Power et al. 2009, Schaerer & Charbonnel 2011, Griffen et al. 2012
 - = Aquarius DM halo + C^2 -Ray
- 3. GC formation was triggered by the reionization
 - Cen 2001, Hasegawa et al. 2009
- 4. GC formation rate using UV luminosity function
 - Katz & Ricotti 2012

To do : ray tracing method + our code

Future work

- 1. Complete the code developments
 - zoom-in technique, especially the boundary particles
 - multi-phase model, H2 cooling, and H2 dependent star formation
 - stability and performance tests
 - using GPU
- 2. Perform the high resolution simulation
 - formation of GCs around the Milky-Way like galaxy
 - relations between properties of GCs and that of the host galaxies
 - GCs as tracers for the history of galaxies
- 3. Correlation between GCs and the cosmic reionization
 - implementing ray-tracing
 - origin of the bimodal distribution of globular clusters

Thank you very much