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Fig. 2. Two-dimensional example of a random point distribution, the Voronoi tessellation around the points, the corresponding Delaunay triangu-
lation connecting the points and the combination of both.

In other words, this means that every point inside a Voronoi cell
is closer to the nucleus of that cell than to any other nucleus.
By joining all nuclei that have a common facet (an edge in 2D,
a wall in 3D), we create the Delaunay triangulation (Delaunay
1934). Thus, every nucleus is connected to its closest neigh-
bours. A 2D example of a Voronoi tessellation and the corre-
sponding Delaunay triangulation is shown in Fig. 2.

The Delaunay triangulation consists of simplices that fill the
entire domain. A simplex is the generalisation of a triangle in Rd,
so a triangle in R2 and a tetrahedron in R3. In a valid Delaunay
triangulation, all simplices obey the empty circumsphere crite-
rion. The circumsphere of a simplex is the unique sphere that
passes through each of the vertices that make up the simplex. In
a valid Delaunay triangulation, no vertex exists inside this cir-
cumsphere.

For Voronoi tesselations and Delaunay triangulations that
are constructed from a point process based on a homogenous
Poisson process, so-called Poisson Delaunay triangulations, it is
possible to derive some general properties relevant for our ra-
diative transfer method. These results were mainly derived by
Miles (1970, 1974) and Møller (1989). Two important proper-
ties for our purposes are the average number of neighbours of a
vertex and the average distance between two connected vertices.
The expectation value for the number of neighbours of a typical
vertex in R2 and R3 is

E2D(E) = 6 (6)

and

E3D(E) =
48π2

35
+ 2 ≈ 15.54. (7)

The expectation value for the distance between two connected
vertices in R2 and R3 is

E2D(L) =
32
9π

n−1/2
p ≈ 1.132n−1/2

p (8)

and

E3D(L) =
1715
2304

(
3
4

)1/3
π−1/3n−1/3

p ≈ 1.237n−1/3
p . (9)

Note that these values are only exact for Delaunay triangula-
tions constructed from a homogeneous Poisson process, while in
SX we use the non-homogeneous Poisson process to place
the grid points. Except for regions in the domain with strong gra-
dients in the point density, on local scale the point distribution re-
sembles a homogeneous point distribution quite well. Therefore
the properties of the Poisson Delaunay triangulation give a good

qualitative idea of the properties of the grid on which we perform
our radiative transfer calculations.

SX is set up in such a way that once the point distribu-
tion is created according to Eq. (4), the Delaunay triangulation is
calculated by an external software package. It is therefore possi-
ble to use any package that suits the application at hand. For all
simulations presented in this paper, the Delaunay triangulation is
calculated using the QHull package1. This is a software package
written in C that is able to calculate the Delaunay triangulation,
the surfaces and the volumes of the simplices in up to 8 dimen-
sions. QHull is based on the Quickhull algorithm (Barber et al.
1995), using the convex hull property of the Delaunay triangula-
tion. QHull has the advantages that it computes the Delaunay tri-
angulation in optimal time O (N log N), it is very stable against
floating point round off errors in case points lie very close to
each other and it is easy to implement as modular plugin routine.
One of the drawbacks of QHull is that it triangulates the entire
point set in one call, so it’s impossible to add or delete points
after the triangulation has been computed. This results in extra
computational overhead in the grid dynamics scheme presented
in Sect. 2.1.4. However, the computation time of the triangula-
tion is small compared to the computation time of the radiative
transfer (see also Fig. 6), so in the present case the extra compu-
tational overhead is acceptable.

2.1.3. The correlation function

In the previous discussion we have not specified the exact shape
of the correlation function f (n(x)) with which we sample the
density distribution of the medium. In order for the grid to adapt
to the properties of the medium, the correlation function should
be a monotonically increasing function in n(x). Thus, the dis-
tance between two connected vertices will be smaller in regions
with high density. From basic transfer theory, we know that the
local mean free path in a medium relates to the local medium
density in the following way:

λ(x) =
1

n(x)σ
, (10)

where σ is the total cross section, σ =
∑

i σ j, consisting of dif-
ferent interaction cross sections σ j. If we compare this to the ex-
pectation value of the Delaunay edge length in Eqs. (8) and (9) it
follows that if we choose the correlation function f (n(x)) to sam-
ple the dth power of the local medium density, e.g. f (x) ∝ xd, the
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lation connecting the points and the combination of both.
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By joining all nuclei that have a common facet (an edge in 2D,
a wall in 3D), we create the Delaunay triangulation (Delaunay
1934). Thus, every nucleus is connected to its closest neigh-
bours. A 2D example of a Voronoi tessellation and the corre-
sponding Delaunay triangulation is shown in Fig. 2.

The Delaunay triangulation consists of simplices that fill the
entire domain. A simplex is the generalisation of a triangle in Rd,
so a triangle in R2 and a tetrahedron in R3. In a valid Delaunay
triangulation, all simplices obey the empty circumsphere crite-
rion. The circumsphere of a simplex is the unique sphere that
passes through each of the vertices that make up the simplex. In
a valid Delaunay triangulation, no vertex exists inside this cir-
cumsphere.

For Voronoi tesselations and Delaunay triangulations that
are constructed from a point process based on a homogenous
Poisson process, so-called Poisson Delaunay triangulations, it is
possible to derive some general properties relevant for our ra-
diative transfer method. These results were mainly derived by
Miles (1970, 1974) and Møller (1989). Two important proper-
ties for our purposes are the average number of neighbours of a
vertex and the average distance between two connected vertices.
The expectation value for the number of neighbours of a typical
vertex in R2 and R3 is

E2D(E) = 6 (6)

and
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Note that these values are only exact for Delaunay triangula-
tions constructed from a homogeneous Poisson process, while in
SX we use the non-homogeneous Poisson process to place
the grid points. Except for regions in the domain with strong gra-
dients in the point density, on local scale the point distribution re-
sembles a homogeneous point distribution quite well. Therefore
the properties of the Poisson Delaunay triangulation give a good

qualitative idea of the properties of the grid on which we perform
our radiative transfer calculations.

SX is set up in such a way that once the point distribu-
tion is created according to Eq. (4), the Delaunay triangulation is
calculated by an external software package. It is therefore possi-
ble to use any package that suits the application at hand. For all
simulations presented in this paper, the Delaunay triangulation is
calculated using the QHull package1. This is a software package
written in C that is able to calculate the Delaunay triangulation,
the surfaces and the volumes of the simplices in up to 8 dimen-
sions. QHull is based on the Quickhull algorithm (Barber et al.
1995), using the convex hull property of the Delaunay triangula-
tion. QHull has the advantages that it computes the Delaunay tri-
angulation in optimal time O (N log N), it is very stable against
floating point round off errors in case points lie very close to
each other and it is easy to implement as modular plugin routine.
One of the drawbacks of QHull is that it triangulates the entire
point set in one call, so it’s impossible to add or delete points
after the triangulation has been computed. This results in extra
computational overhead in the grid dynamics scheme presented
in Sect. 2.1.4. However, the computation time of the triangula-
tion is small compared to the computation time of the radiative
transfer (see also Fig. 6), so in the present case the extra compu-
tational overhead is acceptable.

2.1.3. The correlation function

In the previous discussion we have not specified the exact shape
of the correlation function f (n(x)) with which we sample the
density distribution of the medium. In order for the grid to adapt
to the properties of the medium, the correlation function should
be a monotonically increasing function in n(x). Thus, the dis-
tance between two connected vertices will be smaller in regions
with high density. From basic transfer theory, we know that the
local mean free path in a medium relates to the local medium
density in the following way:

λ(x) =
1

n(x)σ
, (10)

where σ is the total cross section, σ =
∑

i σ j, consisting of dif-
ferent interaction cross sections σ j. If we compare this to the ex-
pectation value of the Delaunay edge length in Eqs. (8) and (9) it
follows that if we choose the correlation function f (n(x)) to sam-
ple the dth power of the local medium density, e.g. f (x) ∝ xd, the
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Fig. 17. Left: slice through the cosmological density field of Iliev et al. (2006) at coordinate z = zbox/2. Centre: cubic sampling using 1283 grid
points, as required by Eq. (11), showing that for realistic density fluctuations the low and intermediate density regions are severely undersampled.
Right: sampling scheme described in Sect. 2.1.3, with parameters α = 0.3 and ρ0 = 3.69 × 10−5. The point density in the lowest density regions
corresponds approximately to a resolution of 773.

at z = 9 from a cosmological N-body and gas-dynamic simula-
tion using the cosmological PM+TVD code (Ryu et al. 1993).
The box size is 0.5h−1Mpc, the gas temperature is initially set
to 100 K. The sources are located in the 16 most massive haloes
in the box, emitting fγ = 250 ionising photons per atom over
ts = 3 Myr resulting in a photon flux of

Ṅγ = fγ
MΩb

Ω0mHts
, (37)

where M is the total halo mass, Ω0 = 0.27, Ωb = 0.043 and
h = 0.7. The total simulation time is 0.4 Myr. SX does
not solve for the temperature state of the gas, so instead we as-
sume a temperature of 1 × 104 K for the ionised gas. This might
cause differences in the number of recombinations compared to
the other codes in the comparison project that do solve for the
temperature, since the recombination rate is a function of the
temperature.

5.3.1. Sampling function

In order to perform this test, we first have to translate from the
grid-based representation of the density field to the SX
grid. As discussed in Sect. 2.1.3, it is essential to have the highest
dynamic range possible while keeping the density gradients to a
minimum. Referring to Eq. (40) in KPCI09, we set the sampling
parameter Qn to 5. We choose the parameter α in Eq. (13) close
to its maximal value of 0.3 in order to have the highest resolution
possible for this Qn in the low density regions. This results in
n0 = 3.69 × 10−5 cm−3. The point density in the lowest density
regions is equivalent to a resolution of approximately 773 for
1283 grid points.

A slice through the z = zbox/2 coordinate of the grid with the
above parameters is shown on the right hand side in Fig. 17. If
we compare the hybrid sampling scheme to the cubic sampling
scheme, we can clearly see that the new scheme produces a grid
that has the desired higher resolution in the dense filaments, but
still has enough grid points in the low density regions to ensure
that photons can travel into these regions. It is this grid that we
will use for performing the radiative transfer simulations.

5.3.2. The result of undersampling

To stress the importance of sampling the medium correctly, we
show in Fig. 18 the results using the old sampling method, used

by SX for the Radiative Transfer Comparison Project,
and the hybrid sampling. For comparison purposes the mode of
transport in both cases is ballistic and the number of grid points
is 1283. The result of the incorrect sampling is clearly visible as
dense neutral clumps in the ionised regions. This is not due to
the fact that photons have preferential directions into the dense
filaments, otherwise we would also see this effect in the hybrid
sampling case. Rather, it is caused by the fact that there are too
few grid points in the low density regions, resulting in very large
cells. Since photons travel along the Delaunay edges, radiation
simply does not travel into the low density regions, resulting in
the observed large neutral clumps in the voids.

An example of this effect is shown in Fig. 19. Consider pho-
tons travelling from left to right along the edges of the trian-
gulation. The reason why the large cell is hard to ionise is not
that there are not enough Delaunay edges pointing towards the
cell. Clearly, the number of edges pointing towards the big cell
is above average. However, as photons are sent to the d most
straightforward neighbours and have no memory of their origi-
nal direction, approximately half of the photons will be travel-
ling around the big cell instead of ionising it. Thus, large cells
are harder to ionise, resulting in the neutral clumps in the low
density regions visible on the left-hand side of Fig. 18. This
problem would be partly cured by the use of weights of the d
most straightforward neighbours, giving the edges pointing into
the big cell a higher number of photons. Another option would
be to restrict the opening angle in which the d most straightfor-
ward neighbours are allowed to be, thus discarding most of the
edges that point around the big cell in case of photons travel-
ling from the right. Applying the direction conserving transport
scheme will not solve this problem entirely, since the photons are
still split up and travelling along the edges of the triangulation
as with ballistic transport, so the problem is essentially the same.
However, a slightly larger fraction of photons will be travelling
into the big cell with direction conserving transport compared to
ballistic transport, as photons that are send in a direction around
the large cell remember their original direction and thus have
a higher probability to travel into the direction of the big cell
again.

5.3.3. Grid dynamics

We have performed a set of simulations to investigate the ef-
fect of regularly updating the grid according the changes in the
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We have performed a set of simulations to investigate the ef-
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Fig. 2. Two-dimensional example of a random point distribution, the Voronoi tessellation around the points, the corresponding Delaunay triangu-
lation connecting the points and the combination of both.

In other words, this means that every point inside a Voronoi cell
is closer to the nucleus of that cell than to any other nucleus.
By joining all nuclei that have a common facet (an edge in 2D,
a wall in 3D), we create the Delaunay triangulation (Delaunay
1934). Thus, every nucleus is connected to its closest neigh-
bours. A 2D example of a Voronoi tessellation and the corre-
sponding Delaunay triangulation is shown in Fig. 2.

The Delaunay triangulation consists of simplices that fill the
entire domain. A simplex is the generalisation of a triangle in Rd,
so a triangle in R2 and a tetrahedron in R3. In a valid Delaunay
triangulation, all simplices obey the empty circumsphere crite-
rion. The circumsphere of a simplex is the unique sphere that
passes through each of the vertices that make up the simplex. In
a valid Delaunay triangulation, no vertex exists inside this cir-
cumsphere.

For Voronoi tesselations and Delaunay triangulations that
are constructed from a point process based on a homogenous
Poisson process, so-called Poisson Delaunay triangulations, it is
possible to derive some general properties relevant for our ra-
diative transfer method. These results were mainly derived by
Miles (1970, 1974) and Møller (1989). Two important proper-
ties for our purposes are the average number of neighbours of a
vertex and the average distance between two connected vertices.
The expectation value for the number of neighbours of a typical
vertex in R2 and R3 is

E2D(E) = 6 (6)

and

E3D(E) =
48π2

35
+ 2 ≈ 15.54. (7)

The expectation value for the distance between two connected
vertices in R2 and R3 is

E2D(L) =
32
9π

n−1/2
p ≈ 1.132n−1/2

p (8)

and

E3D(L) =
1715
2304

(
3
4

)1/3
π−1/3n−1/3

p ≈ 1.237n−1/3
p . (9)

Note that these values are only exact for Delaunay triangula-
tions constructed from a homogeneous Poisson process, while in
SX we use the non-homogeneous Poisson process to place
the grid points. Except for regions in the domain with strong gra-
dients in the point density, on local scale the point distribution re-
sembles a homogeneous point distribution quite well. Therefore
the properties of the Poisson Delaunay triangulation give a good

qualitative idea of the properties of the grid on which we perform
our radiative transfer calculations.

SX is set up in such a way that once the point distribu-
tion is created according to Eq. (4), the Delaunay triangulation is
calculated by an external software package. It is therefore possi-
ble to use any package that suits the application at hand. For all
simulations presented in this paper, the Delaunay triangulation is
calculated using the QHull package1. This is a software package
written in C that is able to calculate the Delaunay triangulation,
the surfaces and the volumes of the simplices in up to 8 dimen-
sions. QHull is based on the Quickhull algorithm (Barber et al.
1995), using the convex hull property of the Delaunay triangula-
tion. QHull has the advantages that it computes the Delaunay tri-
angulation in optimal time O (N log N), it is very stable against
floating point round off errors in case points lie very close to
each other and it is easy to implement as modular plugin routine.
One of the drawbacks of QHull is that it triangulates the entire
point set in one call, so it’s impossible to add or delete points
after the triangulation has been computed. This results in extra
computational overhead in the grid dynamics scheme presented
in Sect. 2.1.4. However, the computation time of the triangula-
tion is small compared to the computation time of the radiative
transfer (see also Fig. 6), so in the present case the extra compu-
tational overhead is acceptable.

2.1.3. The correlation function

In the previous discussion we have not specified the exact shape
of the correlation function f (n(x)) with which we sample the
density distribution of the medium. In order for the grid to adapt
to the properties of the medium, the correlation function should
be a monotonically increasing function in n(x). Thus, the dis-
tance between two connected vertices will be smaller in regions
with high density. From basic transfer theory, we know that the
local mean free path in a medium relates to the local medium
density in the following way:

λ(x) =
1

n(x)σ
, (10)

where σ is the total cross section, σ =
∑

i σ j, consisting of dif-
ferent interaction cross sections σ j. If we compare this to the ex-
pectation value of the Delaunay edge length in Eqs. (8) and (9) it
follows that if we choose the correlation function f (n(x)) to sam-
ple the dth power of the local medium density, e.g. f (x) ∝ xd, the
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Fig. 2. Two-dimensional example of a random point distribution, the Voronoi tessellation around the points, the corresponding Delaunay triangu-
lation connecting the points and the combination of both.

In other words, this means that every point inside a Voronoi cell
is closer to the nucleus of that cell than to any other nucleus.
By joining all nuclei that have a common facet (an edge in 2D,
a wall in 3D), we create the Delaunay triangulation (Delaunay
1934). Thus, every nucleus is connected to its closest neigh-
bours. A 2D example of a Voronoi tessellation and the corre-
sponding Delaunay triangulation is shown in Fig. 2.

The Delaunay triangulation consists of simplices that fill the
entire domain. A simplex is the generalisation of a triangle in Rd,
so a triangle in R2 and a tetrahedron in R3. In a valid Delaunay
triangulation, all simplices obey the empty circumsphere crite-
rion. The circumsphere of a simplex is the unique sphere that
passes through each of the vertices that make up the simplex. In
a valid Delaunay triangulation, no vertex exists inside this cir-
cumsphere.

For Voronoi tesselations and Delaunay triangulations that
are constructed from a point process based on a homogenous
Poisson process, so-called Poisson Delaunay triangulations, it is
possible to derive some general properties relevant for our ra-
diative transfer method. These results were mainly derived by
Miles (1970, 1974) and Møller (1989). Two important proper-
ties for our purposes are the average number of neighbours of a
vertex and the average distance between two connected vertices.
The expectation value for the number of neighbours of a typical
vertex in R2 and R3 is

E2D(E) = 6 (6)

and

E3D(E) =
48π2

35
+ 2 ≈ 15.54. (7)

The expectation value for the distance between two connected
vertices in R2 and R3 is

E2D(L) =
32
9π

n−1/2
p ≈ 1.132n−1/2

p (8)

and

E3D(L) =
1715
2304

(
3
4

)1/3
π−1/3n−1/3

p ≈ 1.237n−1/3
p . (9)

Note that these values are only exact for Delaunay triangula-
tions constructed from a homogeneous Poisson process, while in
SX we use the non-homogeneous Poisson process to place
the grid points. Except for regions in the domain with strong gra-
dients in the point density, on local scale the point distribution re-
sembles a homogeneous point distribution quite well. Therefore
the properties of the Poisson Delaunay triangulation give a good

qualitative idea of the properties of the grid on which we perform
our radiative transfer calculations.

SX is set up in such a way that once the point distribu-
tion is created according to Eq. (4), the Delaunay triangulation is
calculated by an external software package. It is therefore possi-
ble to use any package that suits the application at hand. For all
simulations presented in this paper, the Delaunay triangulation is
calculated using the QHull package1. This is a software package
written in C that is able to calculate the Delaunay triangulation,
the surfaces and the volumes of the simplices in up to 8 dimen-
sions. QHull is based on the Quickhull algorithm (Barber et al.
1995), using the convex hull property of the Delaunay triangula-
tion. QHull has the advantages that it computes the Delaunay tri-
angulation in optimal time O (N log N), it is very stable against
floating point round off errors in case points lie very close to
each other and it is easy to implement as modular plugin routine.
One of the drawbacks of QHull is that it triangulates the entire
point set in one call, so it’s impossible to add or delete points
after the triangulation has been computed. This results in extra
computational overhead in the grid dynamics scheme presented
in Sect. 2.1.4. However, the computation time of the triangula-
tion is small compared to the computation time of the radiative
transfer (see also Fig. 6), so in the present case the extra compu-
tational overhead is acceptable.

2.1.3. The correlation function

In the previous discussion we have not specified the exact shape
of the correlation function f (n(x)) with which we sample the
density distribution of the medium. In order for the grid to adapt
to the properties of the medium, the correlation function should
be a monotonically increasing function in n(x). Thus, the dis-
tance between two connected vertices will be smaller in regions
with high density. From basic transfer theory, we know that the
local mean free path in a medium relates to the local medium
density in the following way:

λ(x) =
1

n(x)σ
, (10)

where σ is the total cross section, σ =
∑

i σ j, consisting of dif-
ferent interaction cross sections σ j. If we compare this to the ex-
pectation value of the Delaunay edge length in Eqs. (8) and (9) it
follows that if we choose the correlation function f (n(x)) to sam-
ple the dth power of the local medium density, e.g. f (x) ∝ xd, the
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Fig. 2. Two-dimensional example of a random point distribution, the Voronoi tessellation around the points, the corresponding Delaunay triangu-
lation connecting the points and the combination of both.

In other words, this means that every point inside a Voronoi cell
is closer to the nucleus of that cell than to any other nucleus.
By joining all nuclei that have a common facet (an edge in 2D,
a wall in 3D), we create the Delaunay triangulation (Delaunay
1934). Thus, every nucleus is connected to its closest neigh-
bours. A 2D example of a Voronoi tessellation and the corre-
sponding Delaunay triangulation is shown in Fig. 2.

The Delaunay triangulation consists of simplices that fill the
entire domain. A simplex is the generalisation of a triangle in Rd,
so a triangle in R2 and a tetrahedron in R3. In a valid Delaunay
triangulation, all simplices obey the empty circumsphere crite-
rion. The circumsphere of a simplex is the unique sphere that
passes through each of the vertices that make up the simplex. In
a valid Delaunay triangulation, no vertex exists inside this cir-
cumsphere.

For Voronoi tesselations and Delaunay triangulations that
are constructed from a point process based on a homogenous
Poisson process, so-called Poisson Delaunay triangulations, it is
possible to derive some general properties relevant for our ra-
diative transfer method. These results were mainly derived by
Miles (1970, 1974) and Møller (1989). Two important proper-
ties for our purposes are the average number of neighbours of a
vertex and the average distance between two connected vertices.
The expectation value for the number of neighbours of a typical
vertex in R2 and R3 is

E2D(E) = 6 (6)

and

E3D(E) =
48π2

35
+ 2 ≈ 15.54. (7)

The expectation value for the distance between two connected
vertices in R2 and R3 is

E2D(L) =
32
9π

n−1/2
p ≈ 1.132n−1/2

p (8)

and

E3D(L) =
1715
2304

(
3
4

)1/3
π−1/3n−1/3

p ≈ 1.237n−1/3
p . (9)

Note that these values are only exact for Delaunay triangula-
tions constructed from a homogeneous Poisson process, while in
SX we use the non-homogeneous Poisson process to place
the grid points. Except for regions in the domain with strong gra-
dients in the point density, on local scale the point distribution re-
sembles a homogeneous point distribution quite well. Therefore
the properties of the Poisson Delaunay triangulation give a good

qualitative idea of the properties of the grid on which we perform
our radiative transfer calculations.

SX is set up in such a way that once the point distribu-
tion is created according to Eq. (4), the Delaunay triangulation is
calculated by an external software package. It is therefore possi-
ble to use any package that suits the application at hand. For all
simulations presented in this paper, the Delaunay triangulation is
calculated using the QHull package1. This is a software package
written in C that is able to calculate the Delaunay triangulation,
the surfaces and the volumes of the simplices in up to 8 dimen-
sions. QHull is based on the Quickhull algorithm (Barber et al.
1995), using the convex hull property of the Delaunay triangula-
tion. QHull has the advantages that it computes the Delaunay tri-
angulation in optimal time O (N log N), it is very stable against
floating point round off errors in case points lie very close to
each other and it is easy to implement as modular plugin routine.
One of the drawbacks of QHull is that it triangulates the entire
point set in one call, so it’s impossible to add or delete points
after the triangulation has been computed. This results in extra
computational overhead in the grid dynamics scheme presented
in Sect. 2.1.4. However, the computation time of the triangula-
tion is small compared to the computation time of the radiative
transfer (see also Fig. 6), so in the present case the extra compu-
tational overhead is acceptable.

2.1.3. The correlation function

In the previous discussion we have not specified the exact shape
of the correlation function f (n(x)) with which we sample the
density distribution of the medium. In order for the grid to adapt
to the properties of the medium, the correlation function should
be a monotonically increasing function in n(x). Thus, the dis-
tance between two connected vertices will be smaller in regions
with high density. From basic transfer theory, we know that the
local mean free path in a medium relates to the local medium
density in the following way:

λ(x) =
1

n(x)σ
, (10)

where σ is the total cross section, σ =
∑

i σ j, consisting of dif-
ferent interaction cross sections σ j. If we compare this to the ex-
pectation value of the Delaunay edge length in Eqs. (8) and (9) it
follows that if we choose the correlation function f (n(x)) to sam-
ple the dth power of the local medium density, e.g. f (x) ∝ xd, the
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Fig. 2. Two-dimensional example of a random point distribution, the Voronoi tessellation around the points, the corresponding Delaunay triangu-
lation connecting the points and the combination of both.

In other words, this means that every point inside a Voronoi cell
is closer to the nucleus of that cell than to any other nucleus.
By joining all nuclei that have a common facet (an edge in 2D,
a wall in 3D), we create the Delaunay triangulation (Delaunay
1934). Thus, every nucleus is connected to its closest neigh-
bours. A 2D example of a Voronoi tessellation and the corre-
sponding Delaunay triangulation is shown in Fig. 2.

The Delaunay triangulation consists of simplices that fill the
entire domain. A simplex is the generalisation of a triangle in Rd,
so a triangle in R2 and a tetrahedron in R3. In a valid Delaunay
triangulation, all simplices obey the empty circumsphere crite-
rion. The circumsphere of a simplex is the unique sphere that
passes through each of the vertices that make up the simplex. In
a valid Delaunay triangulation, no vertex exists inside this cir-
cumsphere.

For Voronoi tesselations and Delaunay triangulations that
are constructed from a point process based on a homogenous
Poisson process, so-called Poisson Delaunay triangulations, it is
possible to derive some general properties relevant for our ra-
diative transfer method. These results were mainly derived by
Miles (1970, 1974) and Møller (1989). Two important proper-
ties for our purposes are the average number of neighbours of a
vertex and the average distance between two connected vertices.
The expectation value for the number of neighbours of a typical
vertex in R2 and R3 is

E2D(E) = 6 (6)

and

E3D(E) =
48π2

35
+ 2 ≈ 15.54. (7)

The expectation value for the distance between two connected
vertices in R2 and R3 is

E2D(L) =
32
9π

n−1/2
p ≈ 1.132n−1/2

p (8)

and

E3D(L) =
1715
2304

(
3
4

)1/3
π−1/3n−1/3

p ≈ 1.237n−1/3
p . (9)

Note that these values are only exact for Delaunay triangula-
tions constructed from a homogeneous Poisson process, while in
SX we use the non-homogeneous Poisson process to place
the grid points. Except for regions in the domain with strong gra-
dients in the point density, on local scale the point distribution re-
sembles a homogeneous point distribution quite well. Therefore
the properties of the Poisson Delaunay triangulation give a good

qualitative idea of the properties of the grid on which we perform
our radiative transfer calculations.

SX is set up in such a way that once the point distribu-
tion is created according to Eq. (4), the Delaunay triangulation is
calculated by an external software package. It is therefore possi-
ble to use any package that suits the application at hand. For all
simulations presented in this paper, the Delaunay triangulation is
calculated using the QHull package1. This is a software package
written in C that is able to calculate the Delaunay triangulation,
the surfaces and the volumes of the simplices in up to 8 dimen-
sions. QHull is based on the Quickhull algorithm (Barber et al.
1995), using the convex hull property of the Delaunay triangula-
tion. QHull has the advantages that it computes the Delaunay tri-
angulation in optimal time O (N log N), it is very stable against
floating point round off errors in case points lie very close to
each other and it is easy to implement as modular plugin routine.
One of the drawbacks of QHull is that it triangulates the entire
point set in one call, so it’s impossible to add or delete points
after the triangulation has been computed. This results in extra
computational overhead in the grid dynamics scheme presented
in Sect. 2.1.4. However, the computation time of the triangula-
tion is small compared to the computation time of the radiative
transfer (see also Fig. 6), so in the present case the extra compu-
tational overhead is acceptable.

2.1.3. The correlation function

In the previous discussion we have not specified the exact shape
of the correlation function f (n(x)) with which we sample the
density distribution of the medium. In order for the grid to adapt
to the properties of the medium, the correlation function should
be a monotonically increasing function in n(x). Thus, the dis-
tance between two connected vertices will be smaller in regions
with high density. From basic transfer theory, we know that the
local mean free path in a medium relates to the local medium
density in the following way:

λ(x) =
1

n(x)σ
, (10)

where σ is the total cross section, σ =
∑

i σ j, consisting of dif-
ferent interaction cross sections σ j. If we compare this to the ex-
pectation value of the Delaunay edge length in Eqs. (8) and (9) it
follows that if we choose the correlation function f (n(x)) to sam-
ple the dth power of the local medium density, e.g. f (x) ∝ xd, the
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Fig. 2. Two-dimensional example of a random point distribution, the Voronoi tessellation around the points, the corresponding Delaunay triangu-
lation connecting the points and the combination of both.

In other words, this means that every point inside a Voronoi cell
is closer to the nucleus of that cell than to any other nucleus.
By joining all nuclei that have a common facet (an edge in 2D,
a wall in 3D), we create the Delaunay triangulation (Delaunay
1934). Thus, every nucleus is connected to its closest neigh-
bours. A 2D example of a Voronoi tessellation and the corre-
sponding Delaunay triangulation is shown in Fig. 2.

The Delaunay triangulation consists of simplices that fill the
entire domain. A simplex is the generalisation of a triangle in Rd,
so a triangle in R2 and a tetrahedron in R3. In a valid Delaunay
triangulation, all simplices obey the empty circumsphere crite-
rion. The circumsphere of a simplex is the unique sphere that
passes through each of the vertices that make up the simplex. In
a valid Delaunay triangulation, no vertex exists inside this cir-
cumsphere.

For Voronoi tesselations and Delaunay triangulations that
are constructed from a point process based on a homogenous
Poisson process, so-called Poisson Delaunay triangulations, it is
possible to derive some general properties relevant for our ra-
diative transfer method. These results were mainly derived by
Miles (1970, 1974) and Møller (1989). Two important proper-
ties for our purposes are the average number of neighbours of a
vertex and the average distance between two connected vertices.
The expectation value for the number of neighbours of a typical
vertex in R2 and R3 is

E2D(E) = 6 (6)

and

E3D(E) =
48π2

35
+ 2 ≈ 15.54. (7)

The expectation value for the distance between two connected
vertices in R2 and R3 is

E2D(L) =
32
9π

n−1/2
p ≈ 1.132n−1/2

p (8)

and

E3D(L) =
1715
2304

(
3
4

)1/3
π−1/3n−1/3

p ≈ 1.237n−1/3
p . (9)

Note that these values are only exact for Delaunay triangula-
tions constructed from a homogeneous Poisson process, while in
SX we use the non-homogeneous Poisson process to place
the grid points. Except for regions in the domain with strong gra-
dients in the point density, on local scale the point distribution re-
sembles a homogeneous point distribution quite well. Therefore
the properties of the Poisson Delaunay triangulation give a good

qualitative idea of the properties of the grid on which we perform
our radiative transfer calculations.

SX is set up in such a way that once the point distribu-
tion is created according to Eq. (4), the Delaunay triangulation is
calculated by an external software package. It is therefore possi-
ble to use any package that suits the application at hand. For all
simulations presented in this paper, the Delaunay triangulation is
calculated using the QHull package1. This is a software package
written in C that is able to calculate the Delaunay triangulation,
the surfaces and the volumes of the simplices in up to 8 dimen-
sions. QHull is based on the Quickhull algorithm (Barber et al.
1995), using the convex hull property of the Delaunay triangula-
tion. QHull has the advantages that it computes the Delaunay tri-
angulation in optimal time O (N log N), it is very stable against
floating point round off errors in case points lie very close to
each other and it is easy to implement as modular plugin routine.
One of the drawbacks of QHull is that it triangulates the entire
point set in one call, so it’s impossible to add or delete points
after the triangulation has been computed. This results in extra
computational overhead in the grid dynamics scheme presented
in Sect. 2.1.4. However, the computation time of the triangula-
tion is small compared to the computation time of the radiative
transfer (see also Fig. 6), so in the present case the extra compu-
tational overhead is acceptable.

2.1.3. The correlation function

In the previous discussion we have not specified the exact shape
of the correlation function f (n(x)) with which we sample the
density distribution of the medium. In order for the grid to adapt
to the properties of the medium, the correlation function should
be a monotonically increasing function in n(x). Thus, the dis-
tance between two connected vertices will be smaller in regions
with high density. From basic transfer theory, we know that the
local mean free path in a medium relates to the local medium
density in the following way:

λ(x) =
1

n(x)σ
, (10)

where σ is the total cross section, σ =
∑

i σ j, consisting of dif-
ferent interaction cross sections σ j. If we compare this to the ex-
pectation value of the Delaunay edge length in Eqs. (8) and (9) it
follows that if we choose the correlation function f (n(x)) to sam-
ple the dth power of the local medium density, e.g. f (x) ∝ xd, the
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Fig. 2. Two-dimensional example of a random point distribution, the Voronoi tessellation around the points, the corresponding Delaunay triangu-
lation connecting the points and the combination of both.

In other words, this means that every point inside a Voronoi cell
is closer to the nucleus of that cell than to any other nucleus.
By joining all nuclei that have a common facet (an edge in 2D,
a wall in 3D), we create the Delaunay triangulation (Delaunay
1934). Thus, every nucleus is connected to its closest neigh-
bours. A 2D example of a Voronoi tessellation and the corre-
sponding Delaunay triangulation is shown in Fig. 2.

The Delaunay triangulation consists of simplices that fill the
entire domain. A simplex is the generalisation of a triangle in Rd,
so a triangle in R2 and a tetrahedron in R3. In a valid Delaunay
triangulation, all simplices obey the empty circumsphere crite-
rion. The circumsphere of a simplex is the unique sphere that
passes through each of the vertices that make up the simplex. In
a valid Delaunay triangulation, no vertex exists inside this cir-
cumsphere.

For Voronoi tesselations and Delaunay triangulations that
are constructed from a point process based on a homogenous
Poisson process, so-called Poisson Delaunay triangulations, it is
possible to derive some general properties relevant for our ra-
diative transfer method. These results were mainly derived by
Miles (1970, 1974) and Møller (1989). Two important proper-
ties for our purposes are the average number of neighbours of a
vertex and the average distance between two connected vertices.
The expectation value for the number of neighbours of a typical
vertex in R2 and R3 is

E2D(E) = 6 (6)

and

E3D(E) =
48π2

35
+ 2 ≈ 15.54. (7)

The expectation value for the distance between two connected
vertices in R2 and R3 is

E2D(L) =
32
9π

n−1/2
p ≈ 1.132n−1/2

p (8)

and

E3D(L) =
1715
2304

(
3
4

)1/3
π−1/3n−1/3

p ≈ 1.237n−1/3
p . (9)

Note that these values are only exact for Delaunay triangula-
tions constructed from a homogeneous Poisson process, while in
SX we use the non-homogeneous Poisson process to place
the grid points. Except for regions in the domain with strong gra-
dients in the point density, on local scale the point distribution re-
sembles a homogeneous point distribution quite well. Therefore
the properties of the Poisson Delaunay triangulation give a good

qualitative idea of the properties of the grid on which we perform
our radiative transfer calculations.

SX is set up in such a way that once the point distribu-
tion is created according to Eq. (4), the Delaunay triangulation is
calculated by an external software package. It is therefore possi-
ble to use any package that suits the application at hand. For all
simulations presented in this paper, the Delaunay triangulation is
calculated using the QHull package1. This is a software package
written in C that is able to calculate the Delaunay triangulation,
the surfaces and the volumes of the simplices in up to 8 dimen-
sions. QHull is based on the Quickhull algorithm (Barber et al.
1995), using the convex hull property of the Delaunay triangula-
tion. QHull has the advantages that it computes the Delaunay tri-
angulation in optimal time O (N log N), it is very stable against
floating point round off errors in case points lie very close to
each other and it is easy to implement as modular plugin routine.
One of the drawbacks of QHull is that it triangulates the entire
point set in one call, so it’s impossible to add or delete points
after the triangulation has been computed. This results in extra
computational overhead in the grid dynamics scheme presented
in Sect. 2.1.4. However, the computation time of the triangula-
tion is small compared to the computation time of the radiative
transfer (see also Fig. 6), so in the present case the extra compu-
tational overhead is acceptable.

2.1.3. The correlation function

In the previous discussion we have not specified the exact shape
of the correlation function f (n(x)) with which we sample the
density distribution of the medium. In order for the grid to adapt
to the properties of the medium, the correlation function should
be a monotonically increasing function in n(x). Thus, the dis-
tance between two connected vertices will be smaller in regions
with high density. From basic transfer theory, we know that the
local mean free path in a medium relates to the local medium
density in the following way:

λ(x) =
1

n(x)σ
, (10)

where σ is the total cross section, σ =
∑

i σ j, consisting of dif-
ferent interaction cross sections σ j. If we compare this to the ex-
pectation value of the Delaunay edge length in Eqs. (8) and (9) it
follows that if we choose the correlation function f (n(x)) to sam-
ple the dth power of the local medium density, e.g. f (x) ∝ xd, the

1 www.qhull.org

Page 3 of 19

Sources

Monochromatic
Black body
Pop III and Pop II

                                  SimpleX               Escape fraction         FiBY                         Results                                 Conclusions



J.-P. Paardekooper et al.: SimpleX2: radiative transfer on an unstructured, dynamic grid

Fig. 2. Two-dimensional example of a random point distribution, the Voronoi tessellation around the points, the corresponding Delaunay triangu-
lation connecting the points and the combination of both.

In other words, this means that every point inside a Voronoi cell
is closer to the nucleus of that cell than to any other nucleus.
By joining all nuclei that have a common facet (an edge in 2D,
a wall in 3D), we create the Delaunay triangulation (Delaunay
1934). Thus, every nucleus is connected to its closest neigh-
bours. A 2D example of a Voronoi tessellation and the corre-
sponding Delaunay triangulation is shown in Fig. 2.

The Delaunay triangulation consists of simplices that fill the
entire domain. A simplex is the generalisation of a triangle in Rd,
so a triangle in R2 and a tetrahedron in R3. In a valid Delaunay
triangulation, all simplices obey the empty circumsphere crite-
rion. The circumsphere of a simplex is the unique sphere that
passes through each of the vertices that make up the simplex. In
a valid Delaunay triangulation, no vertex exists inside this cir-
cumsphere.

For Voronoi tesselations and Delaunay triangulations that
are constructed from a point process based on a homogenous
Poisson process, so-called Poisson Delaunay triangulations, it is
possible to derive some general properties relevant for our ra-
diative transfer method. These results were mainly derived by
Miles (1970, 1974) and Møller (1989). Two important proper-
ties for our purposes are the average number of neighbours of a
vertex and the average distance between two connected vertices.
The expectation value for the number of neighbours of a typical
vertex in R2 and R3 is

E2D(E) = 6 (6)

and

E3D(E) =
48π2

35
+ 2 ≈ 15.54. (7)

The expectation value for the distance between two connected
vertices in R2 and R3 is

E2D(L) =
32
9π

n−1/2
p ≈ 1.132n−1/2

p (8)

and

E3D(L) =
1715
2304

(
3
4

)1/3
π−1/3n−1/3

p ≈ 1.237n−1/3
p . (9)

Note that these values are only exact for Delaunay triangula-
tions constructed from a homogeneous Poisson process, while in
SX we use the non-homogeneous Poisson process to place
the grid points. Except for regions in the domain with strong gra-
dients in the point density, on local scale the point distribution re-
sembles a homogeneous point distribution quite well. Therefore
the properties of the Poisson Delaunay triangulation give a good

qualitative idea of the properties of the grid on which we perform
our radiative transfer calculations.

SX is set up in such a way that once the point distribu-
tion is created according to Eq. (4), the Delaunay triangulation is
calculated by an external software package. It is therefore possi-
ble to use any package that suits the application at hand. For all
simulations presented in this paper, the Delaunay triangulation is
calculated using the QHull package1. This is a software package
written in C that is able to calculate the Delaunay triangulation,
the surfaces and the volumes of the simplices in up to 8 dimen-
sions. QHull is based on the Quickhull algorithm (Barber et al.
1995), using the convex hull property of the Delaunay triangula-
tion. QHull has the advantages that it computes the Delaunay tri-
angulation in optimal time O (N log N), it is very stable against
floating point round off errors in case points lie very close to
each other and it is easy to implement as modular plugin routine.
One of the drawbacks of QHull is that it triangulates the entire
point set in one call, so it’s impossible to add or delete points
after the triangulation has been computed. This results in extra
computational overhead in the grid dynamics scheme presented
in Sect. 2.1.4. However, the computation time of the triangula-
tion is small compared to the computation time of the radiative
transfer (see also Fig. 6), so in the present case the extra compu-
tational overhead is acceptable.

2.1.3. The correlation function

In the previous discussion we have not specified the exact shape
of the correlation function f (n(x)) with which we sample the
density distribution of the medium. In order for the grid to adapt
to the properties of the medium, the correlation function should
be a monotonically increasing function in n(x). Thus, the dis-
tance between two connected vertices will be smaller in regions
with high density. From basic transfer theory, we know that the
local mean free path in a medium relates to the local medium
density in the following way:

λ(x) =
1

n(x)σ
, (10)

where σ is the total cross section, σ =
∑

i σ j, consisting of dif-
ferent interaction cross sections σ j. If we compare this to the ex-
pectation value of the Delaunay edge length in Eqs. (8) and (9) it
follows that if we choose the correlation function f (n(x)) to sam-
ple the dth power of the local medium density, e.g. f (x) ∝ xd, the
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Fig. 2. Two-dimensional example of a random point distribution, the Voronoi tessellation around the points, the corresponding Delaunay triangu-
lation connecting the points and the combination of both.

In other words, this means that every point inside a Voronoi cell
is closer to the nucleus of that cell than to any other nucleus.
By joining all nuclei that have a common facet (an edge in 2D,
a wall in 3D), we create the Delaunay triangulation (Delaunay
1934). Thus, every nucleus is connected to its closest neigh-
bours. A 2D example of a Voronoi tessellation and the corre-
sponding Delaunay triangulation is shown in Fig. 2.

The Delaunay triangulation consists of simplices that fill the
entire domain. A simplex is the generalisation of a triangle in Rd,
so a triangle in R2 and a tetrahedron in R3. In a valid Delaunay
triangulation, all simplices obey the empty circumsphere crite-
rion. The circumsphere of a simplex is the unique sphere that
passes through each of the vertices that make up the simplex. In
a valid Delaunay triangulation, no vertex exists inside this cir-
cumsphere.

For Voronoi tesselations and Delaunay triangulations that
are constructed from a point process based on a homogenous
Poisson process, so-called Poisson Delaunay triangulations, it is
possible to derive some general properties relevant for our ra-
diative transfer method. These results were mainly derived by
Miles (1970, 1974) and Møller (1989). Two important proper-
ties for our purposes are the average number of neighbours of a
vertex and the average distance between two connected vertices.
The expectation value for the number of neighbours of a typical
vertex in R2 and R3 is

E2D(E) = 6 (6)

and

E3D(E) =
48π2

35
+ 2 ≈ 15.54. (7)

The expectation value for the distance between two connected
vertices in R2 and R3 is

E2D(L) =
32
9π

n−1/2
p ≈ 1.132n−1/2

p (8)

and

E3D(L) =
1715
2304

(
3
4

)1/3
π−1/3n−1/3

p ≈ 1.237n−1/3
p . (9)

Note that these values are only exact for Delaunay triangula-
tions constructed from a homogeneous Poisson process, while in
SX we use the non-homogeneous Poisson process to place
the grid points. Except for regions in the domain with strong gra-
dients in the point density, on local scale the point distribution re-
sembles a homogeneous point distribution quite well. Therefore
the properties of the Poisson Delaunay triangulation give a good

qualitative idea of the properties of the grid on which we perform
our radiative transfer calculations.

SX is set up in such a way that once the point distribu-
tion is created according to Eq. (4), the Delaunay triangulation is
calculated by an external software package. It is therefore possi-
ble to use any package that suits the application at hand. For all
simulations presented in this paper, the Delaunay triangulation is
calculated using the QHull package1. This is a software package
written in C that is able to calculate the Delaunay triangulation,
the surfaces and the volumes of the simplices in up to 8 dimen-
sions. QHull is based on the Quickhull algorithm (Barber et al.
1995), using the convex hull property of the Delaunay triangula-
tion. QHull has the advantages that it computes the Delaunay tri-
angulation in optimal time O (N log N), it is very stable against
floating point round off errors in case points lie very close to
each other and it is easy to implement as modular plugin routine.
One of the drawbacks of QHull is that it triangulates the entire
point set in one call, so it’s impossible to add or delete points
after the triangulation has been computed. This results in extra
computational overhead in the grid dynamics scheme presented
in Sect. 2.1.4. However, the computation time of the triangula-
tion is small compared to the computation time of the radiative
transfer (see also Fig. 6), so in the present case the extra compu-
tational overhead is acceptable.

2.1.3. The correlation function

In the previous discussion we have not specified the exact shape
of the correlation function f (n(x)) with which we sample the
density distribution of the medium. In order for the grid to adapt
to the properties of the medium, the correlation function should
be a monotonically increasing function in n(x). Thus, the dis-
tance between two connected vertices will be smaller in regions
with high density. From basic transfer theory, we know that the
local mean free path in a medium relates to the local medium
density in the following way:

λ(x) =
1

n(x)σ
, (10)

where σ is the total cross section, σ =
∑

i σ j, consisting of dif-
ferent interaction cross sections σ j. If we compare this to the ex-
pectation value of the Delaunay edge length in Eqs. (8) and (9) it
follows that if we choose the correlation function f (n(x)) to sam-
ple the dth power of the local medium density, e.g. f (x) ∝ xd, the

1 www.qhull.org
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Escape of ionizing photons 415

Figure 1. Upper: The ionization structure of Halo A(Mh ∼ 7 × 1011 M#). Lower: The ionization structure of Halo B(Mh ∼ 1 × 1010 M#). Colour indicates
the neutral fraction of hydrogen in log scale. White points show the positions of young star clusters.

Figure 2. Escape fraction as a function of halo mass at z = 3–6 for the
N144L10 Fiducial UVB run. Different colours are used for different redshifts
(red: z = 3, blue: z = 5, green: z = 6). The triangles in the bottom right panel
show the mean values in each mass bin with 1σ error bars. The data points
with log f esc < −2.5 are shown at log f esc = −2.5 for plotting purposes.

(blue open circles), and that of the low-mass haloes does not change
largely. On the other hand, our results and Gnedin et al. (2008)
indicate that f esc of high-mass haloes with Mh > 1010 M# does
not change largely with redshift. For low-mass haloes with Mh <

1010 M#, it seems that f esc is increasing slightly with decreasing
redshift in our simulations. This might be due to the increasing
cosmic SFR density and increasing UVB intensity from z = 6 to 3.
Indeed, if we calculate the radiative transfer without the contribution
of UVB in equation (2) for the Fiducial run at z = 3 with the same
gas and stellar distribution, f esc decreases by ∼10–20 per cent. In
addition, the mass fraction of gas with log nH > 0.6 within haloes
increases with increasing redshift, which leads to a lower escape
fraction due to a higher recombination rate.

Fig. 4 shows the probability distribution function (PDF) of star
particles as a function of f esc in haloes with Mh ≤ 1011 M# (top
panel) and Mh > 1011 M# (bottom panel). The probability is defined
by P(f esc) = Nstar(f esc ∼ f esc + " f esc)/(Nstar,total " f esc), where Nstar

is the number of star particles that have the value of f esc ; Nstar,total is
the total number of source star particles; and " f esc is the binwidth.
The figure shows that the lower-mass haloes have a longer tail
towards higher values of f esc. Since the ionization structure in low-
mass haloes shows conical regions of highly ionized gas, ionizing
photons can escape easily through these ionized cones, but not
through other angular directions covered by highly neutral gas.
This allows for some star particles in lower-mass haloes to have
high f esc. On the other hand, the higher-mass haloes show very
complex and clumpy distribution of highly neutral gas, therefore it

C© 2010 The Authors, MNRAS 412, 411–422
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Sources

Simulations of reionisation do not resolve sources

Subgrid model: assume emissivity scales linearly with halo mass

    Iliev et al:                                with

This is a reasonable approximation for the intrinsic emissivity

Escape fraction is not the same for different halo masses
    

Ṅγ ∝ fγMh fγ = fescf�N�
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Part II

The sources of reionisation
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Figure 1. Upper: The ionization structure of Halo A(Mh ∼ 7 × 1011 M#). Lower: The ionization structure of Halo B(Mh ∼ 1 × 1010 M#). Colour indicates
the neutral fraction of hydrogen in log scale. White points show the positions of young star clusters.

Figure 2. Escape fraction as a function of halo mass at z = 3–6 for the
N144L10 Fiducial UVB run. Different colours are used for different redshifts
(red: z = 3, blue: z = 5, green: z = 6). The triangles in the bottom right panel
show the mean values in each mass bin with 1σ error bars. The data points
with log f esc < −2.5 are shown at log f esc = −2.5 for plotting purposes.

(blue open circles), and that of the low-mass haloes does not change
largely. On the other hand, our results and Gnedin et al. (2008)
indicate that f esc of high-mass haloes with Mh > 1010 M# does
not change largely with redshift. For low-mass haloes with Mh <

1010 M#, it seems that f esc is increasing slightly with decreasing
redshift in our simulations. This might be due to the increasing
cosmic SFR density and increasing UVB intensity from z = 6 to 3.
Indeed, if we calculate the radiative transfer without the contribution
of UVB in equation (2) for the Fiducial run at z = 3 with the same
gas and stellar distribution, f esc decreases by ∼10–20 per cent. In
addition, the mass fraction of gas with log nH > 0.6 within haloes
increases with increasing redshift, which leads to a lower escape
fraction due to a higher recombination rate.

Fig. 4 shows the probability distribution function (PDF) of star
particles as a function of f esc in haloes with Mh ≤ 1011 M# (top
panel) and Mh > 1011 M# (bottom panel). The probability is defined
by P(f esc) = Nstar(f esc ∼ f esc + " f esc)/(Nstar,total " f esc), where Nstar

is the number of star particles that have the value of f esc ; Nstar,total is
the total number of source star particles; and " f esc is the binwidth.
The figure shows that the lower-mass haloes have a longer tail
towards higher values of f esc. Since the ionization structure in low-
mass haloes shows conical regions of highly ionized gas, ionizing
photons can escape easily through these ionized cones, but not
through other angular directions covered by highly neutral gas.
This allows for some star particles in lower-mass haloes to have
high f esc. On the other hand, the higher-mass haloes show very
complex and clumpy distribution of highly neutral gas, therefore it

C© 2010 The Authors, MNRAS 412, 411–422
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Escape Fraction

Depends strongly on galaxy morphology

Strong dependence on halo mass
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Figure 1. Upper: The ionization structure of Halo A(Mh ∼ 7 × 1011 M#). Lower: The ionization structure of Halo B(Mh ∼ 1 × 1010 M#). Colour indicates
the neutral fraction of hydrogen in log scale. White points show the positions of young star clusters.

Figure 2. Escape fraction as a function of halo mass at z = 3–6 for the
N144L10 Fiducial UVB run. Different colours are used for different redshifts
(red: z = 3, blue: z = 5, green: z = 6). The triangles in the bottom right panel
show the mean values in each mass bin with 1σ error bars. The data points
with log f esc < −2.5 are shown at log f esc = −2.5 for plotting purposes.

(blue open circles), and that of the low-mass haloes does not change
largely. On the other hand, our results and Gnedin et al. (2008)
indicate that f esc of high-mass haloes with Mh > 1010 M# does
not change largely with redshift. For low-mass haloes with Mh <

1010 M#, it seems that f esc is increasing slightly with decreasing
redshift in our simulations. This might be due to the increasing
cosmic SFR density and increasing UVB intensity from z = 6 to 3.
Indeed, if we calculate the radiative transfer without the contribution
of UVB in equation (2) for the Fiducial run at z = 3 with the same
gas and stellar distribution, f esc decreases by ∼10–20 per cent. In
addition, the mass fraction of gas with log nH > 0.6 within haloes
increases with increasing redshift, which leads to a lower escape
fraction due to a higher recombination rate.

Fig. 4 shows the probability distribution function (PDF) of star
particles as a function of f esc in haloes with Mh ≤ 1011 M# (top
panel) and Mh > 1011 M# (bottom panel). The probability is defined
by P(f esc) = Nstar(f esc ∼ f esc + " f esc)/(Nstar,total " f esc), where Nstar

is the number of star particles that have the value of f esc ; Nstar,total is
the total number of source star particles; and " f esc is the binwidth.
The figure shows that the lower-mass haloes have a longer tail
towards higher values of f esc. Since the ionization structure in low-
mass haloes shows conical regions of highly ionized gas, ionizing
photons can escape easily through these ionized cones, but not
through other angular directions covered by highly neutral gas.
This allows for some star particles in lower-mass haloes to have
high f esc. On the other hand, the higher-mass haloes show very
complex and clumpy distribution of highly neutral gas, therefore it

C© 2010 The Authors, MNRAS 412, 411–422
Monthly Notices of the Royal Astronomical Society C© 2010 RAS

Yajima et al. (2010)
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Figure 1. Upper: The ionization structure of Halo A(Mh ∼ 7 × 1011 M#). Lower: The ionization structure of Halo B(Mh ∼ 1 × 1010 M#). Colour indicates
the neutral fraction of hydrogen in log scale. White points show the positions of young star clusters.

Figure 2. Escape fraction as a function of halo mass at z = 3–6 for the
N144L10 Fiducial UVB run. Different colours are used for different redshifts
(red: z = 3, blue: z = 5, green: z = 6). The triangles in the bottom right panel
show the mean values in each mass bin with 1σ error bars. The data points
with log f esc < −2.5 are shown at log f esc = −2.5 for plotting purposes.

(blue open circles), and that of the low-mass haloes does not change
largely. On the other hand, our results and Gnedin et al. (2008)
indicate that f esc of high-mass haloes with Mh > 1010 M# does
not change largely with redshift. For low-mass haloes with Mh <

1010 M#, it seems that f esc is increasing slightly with decreasing
redshift in our simulations. This might be due to the increasing
cosmic SFR density and increasing UVB intensity from z = 6 to 3.
Indeed, if we calculate the radiative transfer without the contribution
of UVB in equation (2) for the Fiducial run at z = 3 with the same
gas and stellar distribution, f esc decreases by ∼10–20 per cent. In
addition, the mass fraction of gas with log nH > 0.6 within haloes
increases with increasing redshift, which leads to a lower escape
fraction due to a higher recombination rate.

Fig. 4 shows the probability distribution function (PDF) of star
particles as a function of f esc in haloes with Mh ≤ 1011 M# (top
panel) and Mh > 1011 M# (bottom panel). The probability is defined
by P(f esc) = Nstar(f esc ∼ f esc + " f esc)/(Nstar,total " f esc), where Nstar

is the number of star particles that have the value of f esc ; Nstar,total is
the total number of source star particles; and " f esc is the binwidth.
The figure shows that the lower-mass haloes have a longer tail
towards higher values of f esc. Since the ionization structure in low-
mass haloes shows conical regions of highly ionized gas, ionizing
photons can escape easily through these ionized cones, but not
through other angular directions covered by highly neutral gas.
This allows for some star particles in lower-mass haloes to have
high f esc. On the other hand, the higher-mass haloes show very
complex and clumpy distribution of highly neutral gas, therefore it

C© 2010 The Authors, MNRAS 412, 411–422
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Escape fraction

Sites of star formation are so dense that no ionising radiation escapes

Ionising radiation escapes primarily through holes blown by supernovae

    Escape highly inhomogeneous

The local gas complexes are the main constraint on escape fraction
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Figure 1. Upper: The ionization structure of Halo A(Mh ∼ 7 × 1011 M#). Lower: The ionization structure of Halo B(Mh ∼ 1 × 1010 M#). Colour indicates
the neutral fraction of hydrogen in log scale. White points show the positions of young star clusters.

Figure 2. Escape fraction as a function of halo mass at z = 3–6 for the
N144L10 Fiducial UVB run. Different colours are used for different redshifts
(red: z = 3, blue: z = 5, green: z = 6). The triangles in the bottom right panel
show the mean values in each mass bin with 1σ error bars. The data points
with log f esc < −2.5 are shown at log f esc = −2.5 for plotting purposes.

(blue open circles), and that of the low-mass haloes does not change
largely. On the other hand, our results and Gnedin et al. (2008)
indicate that f esc of high-mass haloes with Mh > 1010 M# does
not change largely with redshift. For low-mass haloes with Mh <

1010 M#, it seems that f esc is increasing slightly with decreasing
redshift in our simulations. This might be due to the increasing
cosmic SFR density and increasing UVB intensity from z = 6 to 3.
Indeed, if we calculate the radiative transfer without the contribution
of UVB in equation (2) for the Fiducial run at z = 3 with the same
gas and stellar distribution, f esc decreases by ∼10–20 per cent. In
addition, the mass fraction of gas with log nH > 0.6 within haloes
increases with increasing redshift, which leads to a lower escape
fraction due to a higher recombination rate.

Fig. 4 shows the probability distribution function (PDF) of star
particles as a function of f esc in haloes with Mh ≤ 1011 M# (top
panel) and Mh > 1011 M# (bottom panel). The probability is defined
by P(f esc) = Nstar(f esc ∼ f esc + " f esc)/(Nstar,total " f esc), where Nstar

is the number of star particles that have the value of f esc ; Nstar,total is
the total number of source star particles; and " f esc is the binwidth.
The figure shows that the lower-mass haloes have a longer tail
towards higher values of f esc. Since the ionization structure in low-
mass haloes shows conical regions of highly ionized gas, ionizing
photons can escape easily through these ionized cones, but not
through other angular directions covered by highly neutral gas.
This allows for some star particles in lower-mass haloes to have
high f esc. On the other hand, the higher-mass haloes show very
complex and clumpy distribution of highly neutral gas, therefore it
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Proto-galaxies

(Proto-)galaxy population during reionisation

Relevant mass range: 

    1) Low mass       efficient feedback       high escape fraction?

    2) Star formation suppressed in ionised regions of the Universe

Do these sources produce enough photons?

108 − 109 M⊙
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First Billion Years project

  box size: 

  number of particles:  

  gas particle mass: 

2× 6843

1250M⊙

4 (8, 16)Mpc

FiBY simulation

Khochfar et al. in prep
Dalla Vecchia et al. in prep
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Mass function

Khochfar et al. in prep
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Select all haloes with at least 1 star particle and 1000 dm particles

     > 11,000 haloes in redshift range 6 < z < 22

     number of star particles in each halo: few -  >80,000

Determine the fraction of produced photons that reach virial radius

fesc(t) =
Nphot(r > r200, t)

Nemitted(t)

Halo sample
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Radiative transfer in post-processing

    Follow photons from Pop III and Pop II stars

    Spectra from stellar synthesis models  
      (Raiter et al. 2010; Bruzual&Charlot 2003)

    Absorption by hydrogen and helium

    Multi-frequency approach including relevant heating and cooling processes

Radiative transfer
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Galaxy

C. Dalla Vecchia
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Escape fraction
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Observations:                       for

Observations:

QH II = 1 z � 6.5

Reionisation model

dQH II

dt
=

Ṅion

n̄H,0
−QH II C n̄H,0 α(T ) (1 + z)3

τe =

� zrec

0

dz

����
dt

dz

���� cQH II(z) n̄H,0 (1 + z)3 σT

τe = 0.088± 0.015
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Reionisation results
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Proto-galaxies
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Proto-galaxies

These proto-galaxies are susceptible to feedback
    
    Star formation suppressed by external UV feedback

    Suppression probably underestimated in our simulations

Our simulations do not include the most massive haloes

    Box size is limited due to resolution requirements

    Contribution of these sources is small
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Conclusions

Escape fraction is important parameter in reionisation studies

Escape fraction depends strongly on the halo mass 

Proto-galaxies at z > 10 emit enough photons for reionisation

Star formation in these haloes is suppressed after reionisation 

Topology of reionisation different from current scenarios
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