Simulating the sources of reionisation with SimpleX

Jan-Pieter Paardekooper

MPE Garching

Claudio Dalla Vecchia
Sadegh Khochfar
TMoX Group

TMEOS

Theoretical Modeling of Cosmic Structures

Outline

SimpleX: radiative transfer on an unstructured grid

Simulating the sources of reionisation

Radiative transfer equation solved on unstructured grid

Grid points connected by Delaunay triangulation

Photons are transported along triangulation edges

Interaction takes place at every vertex

Grid points follow the density distribution

SimpleX
Escape fraction

Delaunay Triangulation

Grid points connected using Delaunay triangulation

FiBY

Photon Transport

Photons travel along edges of triangulation

FiBY

Ionisation Physics

Species: Hydrogen and Helium
Solvers: Low ionisation rate: subcycling (Pawik\&Schaye 2008)
High ionisation rate: iterative (Mellema et al. 2006, Altay et al. 2008, Friedrich et al. 2012)

FiBY

Monochromatic Black body Pop III and Pop II

Recombinations

On-the-spot approximation
Radiative transfer of recombination photons

Radiation Hydrodynamics

SimpleX is part of Amuse [Astrophysical Multi-Scale Environment] www.amusecode.org

Simulations of reionisation do not resolve sources

Subgrid model: assume emissivity scales linearly with halo mass

$$
\text { Iliev et al: } \quad \dot{N}_{\gamma} \propto f_{\gamma} M_{\mathrm{h}} \quad \text { with } \quad f_{\gamma}=f_{\text {esc }} f_{\star} N_{\star}
$$

This is a reasonable approximation for the intrinsic emissivity

Escape fraction is not the same for different halo masses

Part II

The sources of reionisation

Depends strongly on galaxy morphology
Strong dependence on halo mass

Yajima et al. (2010)

Escape fraction

Sites of star formation are so dense that no ionising radiation escapes
lonising radiation escapes primarily through holes blown by supernovae

Escape highly inhomogeneous

The local gas complexes are the main constraint on escape fraction

Proto-galaxies

(Proto-)galaxy population during reionisation

Relevant mass range: $10^{8}-10^{9} \mathrm{M}_{\odot}$

1) Low mass \rightarrow efficient feedback \rightarrow high escape fraction?

2] Star formation suppressed in ionised regions of the Universe

Do these sources produce enough photons?

FiBY simulation

First Billion Years project

box size: $4(8,16) \mathrm{Mpc}$
number of particles: 2×684^{3}
gas particle mass: $1250 \mathrm{M}_{\odot}$
Khochfar et al. in prep Dalla Vecchia et al. in prep

Mass function

Khochfar et al. in prep

Halo sample

Select all haloes with at least 1 star particle and 1000 dm particles
$>11,000$ haloes in redshift range $6<z<22$
number of star particles in each halo: few - >80,000

Determine the fraction of produced photons that reach virial radius

$$
f_{\mathrm{esc}}(t)=\frac{N_{\mathrm{phot}}\left(r>r_{200}, t\right)}{N_{\mathrm{emitted}}(t)}
$$

Radiative transfer

Radiative transfer in post-processing

Follow photons from Pop III and Pop II stars

Spectra from stellar synthesis models
(Raiter et al. 2010; Bruzual\&Charlot 2003)

Absorption by hydrogen and helium

Multi-frequency approach including relevant heating and cooling processes

Galaxy

Escape fraction

Reionisation model

$$
\begin{aligned}
& \frac{\mathrm{d} Q_{\mathrm{H} \mathrm{II}}}{\mathrm{~d} t}=\frac{\dot{N}_{\mathrm{ion}}}{\bar{n}_{\mathrm{H}, 0}}-Q_{\mathrm{H} \text { II }} C \bar{n}_{\mathrm{H}, 0} \alpha(T)(1+z)^{3} \\
& \text { Observations: } \quad Q_{\mathrm{H} \text { II }}=1 \quad \text { for } z \lesssim 6.5 \\
& \tau_{\mathrm{e}}=\int_{0}^{z_{\mathrm{rec}}} \mathrm{~d} z\left|\frac{\mathrm{~d} t}{\mathrm{~d} z}\right| c Q_{\mathrm{H} \mathrm{II}}(z) \bar{n}_{\mathrm{H}, 0}(1+z)^{3} \sigma_{\mathrm{T}}
\end{aligned}
$$

Observations: $\quad \tau_{\mathrm{e}}=0.088 \pm 0.015$

Reionisation results

FiBY

Proto-galaxies

These proto-galaxies are susceptible to feedback
Star formation suppressed by external UV feedback
Suppression probably underestimated in our simulations

Our simulations do not include the most massive haloes

Box size is limited due to resolution requirements

Contribution of these sources is small

Conclusions

Escape fraction is important parameter in reionisation studies

Escape fraction depends strongly on the halo mass

Proto-galaxies at z>10 emit enough photons for reionisation

Star formation in these haloes is suppressed after reionisation

Topology of reionisation different from current scenarios

