On the inside-out reionization of the MW satellite system

P. Ocvirk, D. Aubert Observatoire astronomique de Strasbourg

Impact of radiation field structure on the Galaxy

ORT simulations, reionization history of the MW satellites

Pierre OCVIRK - CRTCRPW - Austin 2012

Reionization at galaxy-scale

Observatoire astronomique de Strasbourg

Reionization & the Milky Way

Pierre OCVIRK - CRTCPW - Austin 2012

Bootes D = 60 kpc $r_{\rm h} = 220 \ {\rm pc}$ $M_v = -5.8 \text{ mag}$

Courtesy V. Belokur nd SDSS

Semi-analytical models ^oSatellite SF stops at z_{reion} o=> sats = reionization fossils Oreionization uniform & instantaneous

Impact of local structure of UV field at reionization on MW satellite pop

External, uniform BG

Internal, inside-out

o SAM based on Via Lactea II

o photo-evaporation recipes from lliev et al. 2006

 Signature of reionisation geometry survives down to z=0

Simplification: unique central UV source

cumulative normalized radial distribution of Milky Way satellites

Pierre OCVIRK - CRTCPW - Austin 2012

Impact of local structure of UV field at reionization on MW satellite pop

External, uniform BG

Internal, inside-out

o SAM based on Via Lactea II

o photo-evaporation recipes from lliev et al. 2006

 Signature of reionisation geometry survives down to z=0

Simplification: unique central UV source

cumulative normalized radial distribution of Milky Way satellites

PICON

PICON: Photo-Ionization of **CON**strained realizations of the local group Radiative post-processing of high-res hydro simulation of local group formation

Ο

HYDRO SIMULATION

- o CLUES¹
- Gottloeber et al. 2010 0
- o GADGET 2, WMAP3 (no live RT)
- O produces realistic MW+M3I+M33
- O $M_{part}=2.10^5 M_{\odot}$ (in HR region)

¹CLUES: Constrained Local Universe Simulations Y. Hoffman (Racah Institute of Physics) G.Yepes (Universidad Autonoma de Madrid) S. Gottloeber (Leibnitz Institut fuer Astrophysik Potsdam)

Pierre OCVIRK - CRTCPW - Austin 2012

RADIATIVE TRANSFER

- O ATON (Aubert & Teyssier 2008)
- O grid-based method
- **o** multi-GPU: CUDATON
- O Stellar sources T=50000 K, f_{esc}=0.2
- O H only chemistry, I photon group
- O ~20 h⁻¹ kpc resolution, 512³, 11 h⁻¹Mpc box
- **O** No photo-evaporation/feedback!!
 - No external source (Virgo)

Post-processing of the CLUES simulation with ATON

Setup geometry

- O Low res region => ρ =10⁻² ρ_c
- O Box : I I h⁻¹ Mpc @512^3
- $o => \sim 20 h^{-1} kpc$ resolution

Boundary conditions

- O Transmissive (photons get out)
- O No external source (internal reionization)

II h^{-I} Mpc

Local group reionization map

Pierre OCVIRK - CRTCPW - Austin 2012

O Slice through MW-M31-M33 plane 200kpc thickness

- O 2-4 major patches
- O patches more or less structured
- O each galaxy reionizes in isolation
- O is that always so?

Ocvirk et al. 2012, submitted

Impact of source modelling Increasing emissivity

Mt=5.10 ⁶ M ⊙ (halo detection limit)	No feedback	z, (l) Mpc)
T _{vir} ~10 ⁴ K Mt~1.10 ⁸ M ∘ (z-dependent)	Lyman-Werner suppression of H ₂ formation (Shapiro et al.)	running
Mt=1.10 ⁹ M ⊙	Strong SN feedback (ref?)	(۵۳ ۲. todo

Pierre OCVIRK - CRTCPW - Austin 2012

todo

todo

Conclusions I

O MW and M31 reionize in isolation except in the most extreme models (Strong SN feedback + high emissivity)

O => modelling isolated MWs should be mostly ok in SAMs (cf Griffen et al. 2012)

O low emissivity models => large Δz_{reion}

O => effect on global satellite reionization history?

Effect of > 12.7 Gyr dynamical evolution?