

DLAs, Escape Fraction, & RT

Ken Nagamine UNLV

Collaborators: Hidenobu Yajima (Penn State) Jun-Hwan Choi (Kentucky) Robert Thompson, Jason Jaacks (UNLV)

> KN, Choi, Yajima, 2010, ApJ, 725, L219 Yajima, Choi, KN, 2011, MN, 412, 411 Yajima, Choi, KN, 2012, MN, in press Thompson, KN+ '12, in prep.

Outline

Introduction

- DLAs, Column Density Distribution: f(N_{HI})
- What physical processes shape f(N_{HI})?
 -- effects of radiation (stellar, UVB) & feedback
- How big are DLAs? -- Cross section $\sigma_{DLA}(M_h)$
- Escape Fraction of ionizing photons
- Conclusions

¹⁰⁰ *x*[h¹kpc]</sub> Tescari+'09

$$M_{
m halo}=2 imes 10^{12}h^{-1}M_{\odot}$$

z=3

Column density distribution f(Nн)

KN+ '04a,b

Effect of UVB on f(N_{HI})

- No-UVB run overpredicts.
- UVB sinks in too much w/ opt-thin approx.
- Shutting off UVB at ρ>0.01 ρ_{th,SF} yields good result.

$$\rho_{th^{UV}} \sim 10^{-3} - 10^{-2} \text{ cm}^{-3}$$

Effects of UVB and Self-Shielding

KN+'10

ART method

Authentic Ray Tracing Method (Nakamoto et al. 2001, Iliev et al. 2006)

Radiation meshes are arranged radially from each sources independently of fluid meshes.

The radiation field on fluid meshes are estimated by interpolating from near radiation meshes.

The order of calculation amount

 $N_{source} \times N_{\theta} \times N_{\phi} \times N_{path}$

Long characteristic method: $N_{source} \times N_x \times N_y \times N_z \times N_{path}$

Basic equation: $\frac{dI_v}{ds} = -\alpha_{abs}I_v + \varepsilon_v$

(from Yajima, '09)

Validating OTUV model w/ RT calculation

Yajima, Choi, KN '12

red: UVB RT + collis. ioniz. + stellar RT

Validating OTUV model w/ RT calculation

Effects of Local Stellar Radiation on DLAs

Yajima+ '12

f(N_{HI}) is not so much affected by stellar rad RT

Effects of Radiation on N_н

UVB+coll. ioniz.+star RT

Opt-thin approx.

Halo A

 $M_h=7eII M_{\odot}$

L=300 kpc

(Circles: physical $R_{vir} = 68, 37, 23, 11 \text{ kpc}$)

Yajima, Choi, KN '12

DLA Cross Section vs. Halo Mass

Tescari+ '09; GADGET SPH Fumagali+ '11; ART AMR Pontzen+ '08; GASOLINE SPH Cen '10; Enzo AMR

Yajima, Choi, KN '12

Cosmology (Ω_b , σ_8), SF, FB, UVB, H2,

Altay+'II

Escape Fraction

Yajima, Choi, KN 'I I

Authentic Ray Tracing method

(Nakamoto+ '01, Illiev+ '06, Yajima+ '09)

fesc as a function of Mhalo & redshift

- Choi & KN '09 cosmo SPH sims w/ MVV wind feedback models
- Decreasing f_{esc} as a func of M_{halo} --- roughly consistent with Razoumov+'09; but
 different from Gnedin
 +'09, Wise & Cen '09

Yajima, Choi, KN 'I I

Escape Fraction of Ionizing Photons

Authors	f _{esc,ion} (M _{halo})	Method	
Gnedin+ '09	Very low 10 ⁻⁵ -10 ⁻¹ , 10 ¹¹ -10 ¹² M _☉	AMR, 6Mpc box, 65pc res, OTVET, z=3	Scale in kpc 0.00 5.00
Razoumov+'09	I.0-0.0, 10 ⁸ -10 ¹¹ M₀	SPH, 6Mpc box, ~0.5kpc res, resim 9 gals, z=4-10	Scale in kpc 0.00 3.00
Wise & Cen +'09	Large scatter & time evol. 0-0.4, $10^{6}-10^{9}M_{\odot}$	AMR, 2 & 8Mpc box, 0.1pc res, z=8	$\begin{array}{c} \text{H} & 10^{-5} \\ 10^{0} \\ 10^{0} \\ 10^{-2} \\ 10^{-2} \end{array}$
Yajima+ '09	0-0.5, with time	Eulerian (Mori & Umemura '06 sim, single system, t=0-1Gyr)	10 ⁻³ []
Yajima, Choi, KN 'I I	1.0-0.0 10 ⁹ -10 ¹² M _☉	SPH, 10Mpc box, ~0.5kpc res, z=3-6 100s of gals.	10-6 1 0.1 0.01 10-7 10-6 10-7 10-6 10-7 10-6 10-7 10-6 10-7 10-6 10-7 10-6 10-7 10-6 10-7 10-6 10-7
			¹⁰⁻¹⁰ 0 100 200 300 400 500 time (Myr) Paardekooper+ '11

Reionization of the Universe

- Simulations suggest that the Universe can be reionized by the star-forming galaxies at z=6 if C ≤ 10 .
- High f_{esc} for low-mass gals helps.
- Dashed line: possible quasar contribution
- Dotted line: Bolton & Haehnelt '07

Blue points: intrinsic emission rate density Red points: escaped photons

Yajima, Choi, KN '11

Reionization of the Universe

- Starforming gals can reionize the Universe by z=6.
- Showing contribution from diff. gal. mass ranges
- yellow & cyan shade: results from Munoz & Loeb '11
- dotted line: required SFRD based on Madau '99:

$$\dot{\rho}_{\star} \approx 2 \times 10^{-3} \left(\frac{C}{f_{esc}}\right) \left(\frac{1+z}{10}\right)^3$$

<fesc>=0.42 from RT result of Yajima+ '11

Jaacks, Choi, KN '12

Impact of H₂-based SF model

Conclusions

- Shape of f(N_{HI}): not fully understood yet -- Very rich subject
- **DLA cross section:** $\sigma_{DLA} \approx 10^3 \text{ kpc}^2$ for $M_h = 10^{12} M_{\odot}$ --- but slope and shape of $\sigma(M_h)$; more study needed.
- Opt-thin approx is no good; the OTUV model is a good approx. to the RT result. (KN+ '10; Yajima+ '12)
- **f**esc: wide variety; not understood. Scatter and time variation
- Future work: Improve SF and feedback (SN/AGN); H₂ effect; Metallicity & radiation dependence (metal diffusion; turbulence...)

End