The improvement of START

Kenji Hasegawa (U. Tsukuba, CCS Kobe branch) Takashi Okamoto (U. Tsukuba, CCS Kobe branch)

Cosmological Radiative Transfer Comparison Project Workshop IV @ Austin, Texas, Dec 11-14, 2012

Oulline

@ Introduction @ What is "START" @ Previous Studies with START @ Improvements @ New Ray-tracing • Test & Scalability @ Additional Process (Roles of Dust) @ Preliminary Results

@ Summary

What is "START"

SPH with Tree-based Accelerated Radiative Transfer (KH & Umemura 2010) • Hydrodynamics SPH (Smoothed Particle Hydrodynamics) method · Non-equilibrium chemistry e^{-} , H^{+} , H, H^{-} , H_{2} , H^{2+} , He, He^{+} , and He^{2+} · Radiative Transfer HI, HEI, HEII ionizing photon, and H2 photodissociating photon. SPH particles are directly used as grids for RT \rightarrow Spatial resolution changes adaptively. RT Calculation is accelerated by Tree Algorithm

What is START" SPH with Tree-based Accelerated Radiative Transfer (KH & Umemura 2010)

 Make an oct-tree structure for sources.
If a cell which contains sources is far enough away from an SPH particle, the cell is regarded as a virtual luminous sources. What is START

SPH with Tree-based Accelerated Radiative Transfer (KH & Umemura 2010)

l: size of a cell

the scheme corresponds to RSPH (Susa 2006)

d: distance between a SPH particle and a cell

1) Make an oct-tree structure for sources. 2) If a cell which contains sources is far enough away from an SPH particle, the cell is regarded as a virtual luminous source.

calculation cost is proportional to log(Ns) (Not Ns)

What is 'START" Similar method for grid-based RT ARGOT: Accelerated Radiative Transfer on grids using oct-tree (Okamoto, Yoshikawa & Umemura 2012)

Figure 1. Schematic illustration of the supermesh structure for 8×8 two-dimensional meshes. In this case, the maximum level, l_{\max} , is 3 and the meshes themselves can be used as the highest level supermeshes. A level l supermesh contains $2^{2(l_{\max}-l)}$ meshes. For three-dimensional meshes, a level l supermesh consists of $2^{3(l_{\max}-l)}$ meshes.

Previous Work with START

KH, Umemura & Suwa (2010), Umemura, Susa, KH, Suwa, & Semelin (2012) UV feedback on a secondary collapsing Pop III halo RHD simulation including the transfer of diffuse recombination photons. =>Nsource = NSPH = 2million

The secondary core can survive!!

Previous Work with START

KH & Semelin (2012)

UV feedback on galaxies during the Epoch of Reionization • RHD simulation including internal UV (ionization and LW) feedback in each galaxy.

Previous Work with START

KH & Semelin(2012)

We found: •The formation of galaxies during the EOR is controled by internal UV & SN feedback. •Ionization and Cosmic SF histories are very sensitive to the mass resolution.

Box size is too small to show cosmic reionization history...

Much larger number of particles are required

What we need are

*Powerful Super Computer

*RHD code which enables us to perform massive parallel simulations

Top500 list Nov. 2012 http://www.top500.org

Rank	Site	System	Cores	Rmax (TFlop/s)	Rpeak (TFlop/s)	Power (kW)
0	DOE/SC/Oak Ridge National Laboratory United States	Titan - Cray XK7 , Opteron 6274 16C 2.200GHz, Cray Gemini interconnect, NVIDIA K20x Cray Inc.	560640	17590.0	27112.5	8209
0	DOE/NNSA/LLNL United States	Sequoia - BlueGene/Q, Power BQC 16C 1.60 GHz, Custom IBM	1572864	16324.8	20132.7	7890
0	RIKEN Advanced Institute for Computational Science (AICS) Japan	K computer, SPARC64 VIIIfx 2.0GHz, Tofu interconnect Fujitsu	705024	10510.0	11280.4	12660

~82k nodes (650k cores) available Peak Performance ~ 10PFlops

Parallelization: Between nodes

★The size of each domain is adjusted to have equivalent calculation cost every a few steps.

Parallelization: Between

 \star The size of each domain is adjusted to have equivalent calculation cost every a few steps. *Each domain asynchronously sends (receives) optical depths. to downstream (from upstream) domains. (same as RSPH by Susa 2006)

Parallelization: Between

*The size of each domain is adjusted to have equivalent calculation cost every a few steps. *Each domain asynchronously sends (receives) optical depths. to downstream (from upstream) domains. (same as RSPH by Susa 2006)

Parallelization: Between

 \star The size of each domain is adjusted to have equivalent calculation cost every a few steps. *Each domain asynchronously sends (receives) optical depths. to downstream (from upstream) domains. (same as RSPH by Susa 2006)

Make Load balance better

Test of the new method

DATA: the distributions of the SPH and stellar particles @z=7.0 obtained by a cosmological hydrodynamic simulation. NSPH = 128^3 , Ns[~]300

Reference (by RSPH)

-2 0 2 -2 0 2 -2 0 X [Mpc] X [Mpc] X [Mpc]

0 2 X [Mpc]

Number of Nodes

1000

0.01

100

10000

START scalability: RT Part Comparison between the improved and old versions XE6(cray)@Kyoto NSPH=256³ Nsource=16K

START scalability: RT Part Test with 512³ SPH particles and 16k source particles 100 NSPH = 512^3 NSPH = 256 CPU time [sec/step] 10 Tota RT calc MP 1 •With 512³ particles, the scheme still shows good scalability. •It is expected that the scheme keeps good scalability, even if we increase the number of nodes. 0.1 100 1000 Number of Nodes

Additional Processes

Evolution of spectrum (age, freq.) = (22, 60)

In previous study (KH & Semelin 2012), we assumed blackbody-shape with 50,000K for stellar sources.

High energy photons were Metal Enrichment

> Affect STAR FORMATION •Metal cooling eRoles of Dust grain • Molecular formation · Absorption of Photons · Radiation Force

Population synthesis by PEGASE

and

REIONIZATION

without dust

Z=0.01Zsun Dust size 0.1micron *Found in Local Group *Proposed by Nozawa+(2007)

Dust size 0.01micron *Typical size of first grains, proposed by Todini & Ferrara (2001)

Summary

New method: Good Strong Scaling. (So far up to 2,000 nodes)

Probably NSPH=1024³ run is possible, using K computer 8k-16k nodes (in 1-2 weeks?). Accurate (with small tolerance parameters)

Simulations including Metal Enrichment: The role of metal (especially dust) on the evolution of high-z galaxies and IGM. Compute SEDs, LF, escape fraction ... of high-z galaxies.