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* Tests
— Streaming radiation tests
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— Static blackbody
— Test5 — Classical HII expansion

— Cosmological I-fronts

* Solver Scalability



Some standard Enzo benchmarks

* ISM turbulence (no DM)
— production: 2048° (UG) on 4096 cores
— capability: 4096° (UG) on 16,000 cores

* Cosmology

— production (UG) e.g. LAF: 2048’ (mesh) + 2048° (DM
particles)

* 2048 cores
— capability (UG): 2944° (mesh) + 2944° (DM particles)
* [2167 cores
— production (AMR): L7 - 1024° (mesh) + 1024° (DM
particles) [root grid] (L7: 7 levels of refinement)

* 400,000 subgrids at z=5.8
* 2048 cores
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Enzo Numerics

The PDE system is solved with a method of lines approach using:
« Finite volume spatial approximation, with PPM flux reconstruction.
« Explicit time integration for the hydrodynamic quantities gy, vy and e,

& Operator-split coupling to a steady-state Poisson solve for the
gravitational potential &, basad on

— an FFT-based solve for periodic domains, or

— a geometric multigrid solve for isolated /mixed BC domains.

« Block-structured AME discretization of 2, with inter-level couplings via
— flux/refluxing to ensure conservation across lavels,

— time subcycling of refined grids for CFL stability.



Goals

I. Extend Enzo code for cosmological hydrodynamics 4+ gravity to include
radiation transport £ chemical ionization, enabling:

— studies of self-regqulated star formation,
— predictions on the epoch of cosmic reionization, and

— predictions on the observed properties of early galaxies.

II. Accurately model stiff cosmaological radiation transfer and chemical
jionization kinetics processes,

ITII. Incorporate new solver in Enzo code so that coupling respects
hydrodynamics approach (shocks), but tightly couples physical processes.,

V. Enable very-large-scale simulations ({J(IDEJ processors),



Flux-Limited Dirfusion Radiation Transrer

We approximate the radiative flux as a function of the energy density gradient,

F. = —lD‘E"E,,,
i

where I0: 0 — R**% s the flux limiter, D = INE, ,VE.).

With this approximation, the radiation energy equation becomes
Ew +1V. (Bovi) — 5V - (DVE.) — 25 (VIDVE)) : (Vva)
=v2d,E, — 32E, + 4mn, — ck, E,.
Motes:
« The emissivity n. @ &1 — IR may depend on the energy e, and abundances n;.
« The opacity k. : 1 — IR depends on the chemical abundances n;.

« [ allows a smooth transition between diffuse and free-streaming limits.



Coupled Matter-Radiation System

Combining the original, cosmological hydrodynamic system with the new
chemical and radiation equations, we consider the coupled system,

dn G
":'E'i:' = T EPE- + fdm — |E'|:|:| 5

Bupy + Lvy Vo = LoV - vy,

&

ve+ 1 (vi - V)ve = —2vy — L vp— 1yy,

a aek
a¢e+£w Ve=—2e - L7 jpvy) — Lvy, Vi 4+ — A,
a a a ek a ’

e + W 'I:II.;'\.-"E,:I = —3%&' _nil'mf'& +Ct:-f_;

GE + 1V . (Evy) - LV . (DVE) = —42E + 4mn—ckE.  (Grey)

Il.i:]:l._-;i.,

In the gas energy equation, & = &{E, n;) and A = A{E.n;) are the heating rate
and cooling rates, corresponding to enargy sources and sinks due to radiation
and chemical couplings.



Formulation of Implicit Coupled System

We decompose the energy into two parts, e = e, + €. ep arises from the explicit
hydrodynamic advection, e. is the correction dus to chemical-radiation coupling,

5 25 g " -
Belen +e) +Lvy Ve=—2a(e, o) — LV () — Lvy Vé+ G- A

agh

Since Enzo evolves g, vy & =, STaoveECts T2 explicitly, we solve the
remainder implicitly to evolve n;, E and the ensrgy correction e.,

e, = —2%&',\_- +iF— A,
= ; .k
Dy = —S%D.i —ﬂil_'zi-p +l‘.'t:-_'=jcﬂ.!ﬂ:_i,

HE = 5V . (DVE) —42E +4m — ckE.
# 5Such splitting into separate advection and reaction-diffusion processes

may limit the solver accuracy and stalbility.

« However, each process uses the best-suited algorithm, and induced errors
are no greater than the ariginal gravity /dark matter splitting.



Implicit Time Discretization

We consider a 2-level 8-scheme for implicit integration of the updated energy
er, radiation energy density £ and chemical species densities n:

er + AtOLT (eo,n;: E) = gn 1,
n +AWLY (e.,n; E) = 9;?,—1-*

E" + At DE (E)+ £g(een E) | = E?'E_l-‘

where we have defined the component operators as

Lofecm, E)=22e. — G+ A,

Lolec,n;, E) = 3%11;- +n=-1"fh — ol n.n;,

LE(econ;, E) = 42E — dary + ckE,
Dgp(E)= -5V - (DVE),

and gf‘_l = At{#— 1) Fai +'Dl‘_1| provide data from the previous time step.

Mote: & =1 — Implicit Euler, & = %—ﬁ Trapezoidal rule {CM).



Implicit Solution Approach

Denoting the vector of unknowns 7 = (ec,ni,Ejur, we define the nonlinear
residual function, fil7), over the time step bt oas

i L. . g:—l
flU)=U + Atd Ly - et
. P+ LE | Cgp!

To evolve the coupled implicit system, we must solve the nonlinear problem
FILTy =0 for the updated vector LT,

To this end, we use a globalized Inexact Newton's Method, that iterates toward
the solution L™ through a sequence of linearized solutions:

1. Given an initial iterate Uy, we seek 7, such that f{I7,) = 0.
2. Repeat for each &, until || (L7 q)] < ==D
(a) Approximately solve the linear system Jil7.) S, = —filly)

(b) Update the approximate solution: U = Uy + ApSk

||j[:'['ri' JSk+ 1 L"Fc]” <y = 1(]_5||f|:[;k3|| Classic Inexact Newton



Globalized Inexact Newton Details

Specifically,

J(L) provides a local linear model of f{(L7) around L7, J(I7) = F'?:,.f([-'j.

0 Ap = 1is the line search parameter, chosen to ensure stability and
globalization of the Newton algorithm.

Uy == "1 is an initial guess for the time-evolved solution 7).

[| -] 15 a weighted L-2 norm, chosen to balance the different physical
Componants,

Efficiency of this algorithm relies on a fast and robust solver for the linear
Mewton systems; robustness depends on an accurate initial guess.

Given a robust and scalable linear solver, The Newton algorithm exhibits fast
convergence that for many PDE systems is independent of spatial resolution.

[z== Dembao et al., 1552 Cennis & Schnabsl; Brown & Saad, 19593 Allgower et al., 1966, Weiser =t al., 2008]



Linear Newton Systems

The matrices arising in the inexact Newton algorithm have the form

-;re.e -I-r:.:u. -'ire,E

Jy=I+at| 5. J.. g

Jee JEa JEE |

where the matrix blocks contain the components

Je,-: = [ae-"::-:] -'Fe,n = [ani-"::-:~ ang-c'er . ] JE,E = [aE'EE]
Joe=| Gelag Jow=1 Fn1Lny  OagLag Jog=| 9ELn
JE,-:=['5'-=£E] J.E,n=[ani-£-£1ang£-£, ] -IE,E =[SE|:TIE +-£E:|]

Mote: All blocks are local except for Jg g, which contains spatial couplings.



Linear System Structure

Though the Jacobian contains couplings within and between variables, it has a
very desirable structure:

# all inter-variable couplings occur only locally in space,

« spatial couplings are limited to the block Jg g, consisting of a second
order reaction-diffusion operator.

We therefore consider the Jacobian system Jx = b to have the structure

M U || zum ) = b )
L D ( TE ( be |

where

Fl
i
i

-;re.e -ir-z.:n . -ir.= E | H i I
M =T+ At# . U= Atd ’ Tar = ( )
Ju,e Jun Jo.E . In

L = Atf Jg . -IE.nl . D=1+ At8 nggl



Schur-Cc G-MG Linear Solver

Since M1 s simple to compute {(block-diagonal), we use a Schur complement
formulation to solve for -,

Mzry+Usgp =byy =  mpp = M by — Uzg),
hence,

Lryg+ Drgp=bg = (D—LM W)zg =bg — LM by

The linear solve therefore proceeds as

(i) Set ypy =M~ 1by, , T=M-1U

(i) Solve for zg from (D — LT rg = by — Luny
(i) Recover zayr =un —TrE

The step (i) uses efficient direct solves [LAPACK].
The step (i) uses a multigrid-preconditioned CG method [HYPRE].
Mearly all of this approach extends directly to the multi-frequency case.



Adaptive Time Step

Implicit 1onization/radiation stability expands time step restrictions to the
CFL hydrodynamic stability limit. For temporal accuracy of the solution
within the hydro step we implement adaptive time steps to help satisfy
prescribed accuracy requirements. We define a weight vector for the
expected magnitude of the solution component at cell 1 by:

wip =\ [UEFLUP) 41070 Constant value for normalized quantities
=Y q

We then estimate a local accuracy of the current time step as (N #cells, Ns #species):

( 1 p) )
“loc = - Y
N(N, +2) .

Where we use standard p-norm including p=co for the test problems which

reduces the formula — by definition — to searching for a maximum value.

Currently we use U, 2 = U, ,”. With this estimate we set the new time step equal to:
Tiol A"

“loc

[.-'r.+l _ E.-‘pr'ed

\J.-'I
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Test 1: Static isothermal HII Region
(monochromatic)

Spherically averaged HIl profiles
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Test 2: Static HII Region (blackbody spectrum)
HIL HII profiles

Spherically averaged Hl, Hll profiles, t = 100 Myr
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Test 2: Static HII Region (blackbody spectrum)

. Spherically averaged Temperature profile, t = 10 Myr Spherically averaged Temperature profile, t = 100 Myr . Spherically averaged Temperature profile, t = 500 Myr
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Test 5(grey): Classical HII expansion

Profiles at t=10,100,200 and 500 Myrs
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Cosmological I-fronts
from Shapiro & Giroux (1987)
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Parallel Scalability (SG problem)

Weak Scaling, Cosmological lonization Test (Kraken)

1
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CPU scaling test performed
on SG (q,=0.5) problem between

z=4 to z=3.

Initial spatial grid of 64° is
increased by factors of 2°.
Number of processors is
subsequently increased by
the same factor.
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Current Work towards real-universe applications

* Incorporate effective frequencies method:

Obtain solutions at the three primary species 1072} 1 71 -

ionization energies and interpolate between I A ]

them and the optically thin background to " —a | Iy

reconstruct a “realistic” absorption spectrum = ' }
*  Extension of the FLD solver to AMR i _ - L

hierarchy: requires HYPRE modification L i }

*  Point emissivity array nested in the AMR
hierarchy at locations of star-formation or L .
mass halo peaks for QSO driven
photoionization Ho i I P

or . v pOTySle) o 0T Sale) o ¢ OT S30e)
E.=E7 x (E\/E" )" x (Ey/E5" )\ x (Eg /B3 )™



Conclusions

We've achieved a second-order accurate (space and time) coupled solver for
cosmological radiation, hydrodynamics, self-gravity and chemical ionization.

& Captures shock fronts in hydrodynamic fields, due to trusted PFM
hydrodynamics approach.

« Efficient implemeantation due to semi-structured regular grids.

& Accurately solves couplings between radiation, ionization and gas enargy,
due to implicit formulation and Schur-complemeant linear solver.

& Achieves ultra-scalability, with current tests up to = 4000 processors, due
to inner reliance on optimal multigrid methods.
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