Imprint of Inhomogeneous Hydrogen Reionization on the Temperature Distribution of the Intergalactic Medium

> Hy Trac Institute for Theory and Computation Postdoc Harvard-Smithsonian Center for Astrophysics

21 cm signal with radio telescopes

hydrogen + radiation

on ↔

proton

n + electron

on + <mark>heat</mark>

Young, star-forming galaxies Rare, but luminous quasars

Thomson scattering with the CMB Kinetic Sunyaev-Zel'dovich effect

THERMAL EVOLUTION after UNIFORM REIONIZATION

Hui & Gnedin (1997)

Instantaneous and uniform reionization models

- a) z_{RE} = 5
- b) z_{RE} = 7
- c) $z_{RE} = 10$
- d) z_{RE} = 19

Temperature-density relations

- z = 4, 3, 2 from top to bottom
- Approximately powerlaws with little scatter

Lyman alpha absorption/scattering by neutral hydrogen

LYMAN ALPHA ABSORPTION in HIGH-REDSHIFT QUASARS

PHYSICAL SCALES & NUMERICAL REQUIREMENTS

Mass resolution

 Identify dark matter halos with mass ~ 10⁸ Msun/h in order to model galaxy formation

Simulation volume

 A box size ~ 100 Mpc/h is required to have a fair sample of galaxies

Conclusions

 N-body simulations must have 20 to 35 billion particles

N-BODY		SOURCES		
 The dark matter distribution is represented by collisionless particles influenced only by gravity 		 Stars form within cooling radius of dark matter halos with temperatures > 10⁴ K 		
 Identify collapsed dark matter halos on the fly to model sources and sinks 		 Star formation rate modeled using empirical relations (e.g. Schmidt-Kennicutt law) 		
 Particle-multi-mesh N-body code (Trac & Pen 2006) 		 Source spectra modeled from population synthesis (e.g. Bruzual & Charlot, Schaerer) 		
	1	2		
HYDRODYNAMICS	3	4 RADIATIVE TRANSFER		
 Fluid conservation equations for gas mass, momentum, and total energy are solved on an Eulerian grid. 		 Adaptive raytracing to track the propagation of ionizing photons With ray splitting to improve angular resolution (Abel & Wandelt 2001) 		
 Eulerian moving-frame hydro + particle-mesh N-body code (Trac & Pen 2004) 		 With ray merging to improve scaling with sources (Trac & Cen 2007) 		
 Includes non-equilibrium ionization, non- uniform photoheating, atomic cooling, metal transport 				

COSMOLOGICAL SIMULATIONS

Model	L (Mpc/h)	Ndm	N _{Gas} , N _{Ray}	M _{DM} (Msun/h)	Comments
L100N	100	29 Billion		2.7 x 10 ⁶	N-body only
L100A	100	1536 ³	1536 ³	2.1 x 10 ⁷	Late reionization z _{END} ~ 6
L100B	100	1536 ³	1536 ³	2.1 x 10 ⁷	Early reionization z _{END} ~ 9
L100	100	24 Billion		3.0 x 10 ⁶	N-body & radiative transfer
L50A	50	3 Billion	400 Million rays	3.0 x 10 ⁶	Pop II stars
L50B	50	3 Billion	400 Million rays	3.0 x 10 ⁶	Pop II & III stars

r	I		Γ	I
MODEL	z _{50%} by volume (solid)	z _{50%} by mass (dashed)	Z _{END}	T _{THOMSON}
EARLY	10.0	10.4	~ 9	0.098
LATE	7.3	7.7	~ 6	0.062

z=29,2270

1

HII density

-0

Inverted powerlaw relations with slope -0.2 for the early $(z \sim 9)$ and late $(z \sim 6)$ models

End-of-reionization temperature as a function of reionization-redshift for low-density gas δ ~ -0.5

(Trac, Cen, & Loeb 2008)

SUMMARY

Photoheating of the IGM

- The signature of inhomogeneous reionization is imprinted in the temperature distribution of the intergalactic medium
- The temperature-density relation at low densities is inverted just at the completion of reionization and there is order unity spread at a fixed density

Radiative transfer algorithm

- Adaptive ray splitting and merging
- Time stepping based on the light-crossing time
- Scales as O(N) and effectively independent of the number of sources when the radiation filling factor approaches unity