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Astronomical jet
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Super Eddington accretion model

Slim disk model

High mass accretionrate 7= M / M eaq > 1

=> Optically thick & Geometrically thick ADAF rEeE
(Advection-dominated Accretion Flow) Q:ls _ Qr_ad + Qa_dv
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F1G. 2—The m(Z) relation for slim accretion disk models for three fixed radii, r/R; = 4 (solid line), 5 (dashed line), and 10 (dotted line). T is a surface density in
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Previous work

Radiation Hydrodynamics simulation

Ohsuga(2006) performed RHD simulation assuming FLD approximation.
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FLD approximation is correct at optically thin and thick limit.
But, it is debatable at 7~1 region.
Anyway, it is not clear whether jet is generated by radiation pressure.



Previous work

Magneto-Hydrodynamics simulation
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This is examined the case with initially
poloidal field configurations with p~10.
Magnetic jet is driven by magnetic pressure
asserted by accumulated toroidal fields which | :
speed 1s ~0.2c.
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The collimation width of the magnetic jet

depends on external pressure. $
Nonnegligible external pressure tends to

suppress the emergence of the MHD jets.
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MHD simulation by Kato et al. (2004)

These calculation do not include radiation pressure.
In the case of slim disk, we should consider the effect of radiation force.




Purpose

As the first step to explore the significance of radiation pressure, we solve the
three-dimensional radiation transfer on the structure obtained by the three-
dimensional MHD simulation.

I examine how the radiation force works on the magnetic tower jet.

I use the data from MHD simulation Kato et al. (2004).
The resolution of my simulation is 100x100x50 on Cartesian
coordinates.

Then I solve diffusive radiation transfer with ART.



ART (Authentic Radiative Transfer) method

ART method for calculating the transfer of

diffuse radiation ( Type Il ) ~ NxNyN 2 7 NogN N v
The technique is slightly complicated, but can 74 7K /
reduce computational cost, compared to long 57 /
characteristic method with high accuracy. \[74 7 /

A

Specific intensities are calculated along the rays.

Long Characteristics

The specific intensities on the fluid grids are NN
interpolated from the nearest radiation grid. NeNx Ny 2" % No Ny
For different directions, specific intensities on grid |
points are obtained in the same way. ]
Finally, they are integrated over all solid angles. [ / //7
#
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Setup

I use the density and temperature distribution of results of Kato et al (2004).
I assume slim disk model for super massive BH.

* Mesh:100x100%x50

 BH Mass : 103M_,,

* Density d1str1but10n
10-19~10-12[g/cm3] (disk)
10-12~10-B[g/ecm?](jet & corona) ~

* Temperature distribution - o
108~101[K] (disk) .
1010~1013[K](jet & corona) .

* Frequency : 1014~1018[Hz] .

* Opacity : Thomson, free-free Z

0 10 20 30 40 50 60 70 80 920 100



Setup

Gas temperature.fk}. ..

Radiation Temperature [K] "emp2D-dat’u13:5
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I determined radiation

temperature using equilibrium |
of gas internal energy and
radiation energy. R,]

0 10 20 30 40 50 60 70 80 90 100

* radiation pressure dominant



At the inside of the disk and the jet, the radiation force effectively works. But,
at the surface of the jet, the gravitational force is stronger than the radiation
force. In the region of the corona, the radiation pressure 1s very strong.
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Effects of radiation force

The radiation force cannot contribute to the collimation of the jet.
In the inside of the jet, radiation force works to accelerate the jet.

The green vector is the net force (F,-F,).
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Conclusions

We investigated the significance of radiation pressure in
astronomical jets by ART calculation.
Three-dimensional radiation transfer was calculated by using

density and temperature structure for the jet and disk of Kato et
al.(2004).

We have found

1) The radiation force can contribute to the
acceleration of the jet.

2) The radiation force does not seem to work significantly
to collimate the jet.



Thank you!!



