X-ray effect on T_k

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

The simulated 21 cm signal during the EoR : Ly- α and X-ray fluctuations

Sunghye BAEK

Collaborators : B. Semelin, P. Di Matteo, F. Combes, Y. Revaz LERMA - Observatoire de Paris

9 Dec 2008

Physics of the 21 cm Line

LICORICE for the 21 cm Transition

Simulations

X-ray effect on T_k

Future Work

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Physics of the 21 cm Line

The Differential Brightness Temperature

$$\delta T_b \approx 28.1 \,\mathrm{mK} \, x_{\mathrm{HI}} (1+\delta) \left(\frac{1+z}{10}\right)^{\frac{1}{2}} \frac{T_S - T_{\mathrm{CMB}}}{T_S} \frac{H(z)/(1+z)}{dv_r/dr}$$

The usual assumption $T_s \approx T_k \gg T_{CMB}$

- No need for computing T_s or T_k
- No signal in absorption

Is $T_s \approx T_k \gg T_{CMB}$ always true?

$$T_{S}^{-1} = \frac{T_{CMB}^{-1} + x_{\alpha}T_{c}^{-1} + x_{c}T_{K}^{-1}}{1 + x_{\alpha} + x_{c}}$$

- 1. $T_s \approx T_k$ is true either
 - $x_{lpha} \gg 1$: sufficient Ly-lpha scattering (not in the early EoR)
 - $x_c \gg 1$: sufficient collision (effective where $\delta \rho / \rho$)

2. $T_k \gg T_{CMB}$ is true

when neutral IGM in the voids is sufficiently pre-heated.

 \implies In some cases(Early EoR), we need to compute $T_k(\vec{x}, z)$ and $T_s(\vec{x}, z)$ as well as $x_{HI}(\vec{x}, z)$ for an exact estimation of 21 cm transition.

X-ray effect on T_k

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへで

Future Work

The code : LICORICE

General RT methods

- Monte Carlo ray-tracing
- Adaptive grid

The code : LICORICE

General RT methods

- Monte Carlo ray-tracing
- Adaptive grid

1. Compute $T_k(\vec{x}, z)$ and $x_{HI}(\vec{x}, z)$ in UV Continuum and now X-rays continuum

- Hydrogen and Helium
- Heating and Cooling process
- Adiabatic expansion
- Adaptive time step for ionization and cooling

+ ... shock heating(future work): need coupled hydro radiative simulation!

Future Work

The code : LICORICE

General RT methods

- Monte Carlo ray-tracing
- Adaptive grid

2. Compute $T_s(\vec{x}, z)$ with Ly- α line transfer (Semelin et al. 2007)

- local x_{α} value from Ly- α line transfer
- Fully cosmological (redshifting photons, retarded time)
- Several acceleration schemes(a few tens of scatterings instead of 10⁶)

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

The code : LICORICE

A typical run

 2×256^3 particles, 130 snapshots from $z\sim40$ to $z\sim6$ Dynamics with GADGET (Y.Revaz)

Continuum RT

- $\sim 1000 \text{ CPU}$ hours
- ~10 Go shared memory(OpenMP)
- $\sim 10^8$ photon packets

The next step

 2×512^3 particles in a 100 Mpc/h box ($\sim10^9 {\rm M}_\odot$ halos) Dynamics : done RT : Possible on Vargas(IDRIS). 256 Go on a single node.

$\operatorname{Ly-}\alpha \operatorname{RT}$

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

- $\sim 1000 \text{ CPU}$ hours
- ~10 Go shared memory(OpenMP)
- $\bullet~\sim 10^8$ to 10^9 photon

Simulations(Baek et al. 2008)

- 256³ DM + 256³ Baryons(no He)
- 20 Mpc/h(S20) and 100 Mpc/h(S100) box size
- $8\times 10^8 {\rm M}_\odot$ and $10^{11} {\rm M}_\odot$ resolved halos for S20 and S100 simulations

The simulation pipeline

- 1. Dynamic (GADGET) \Rightarrow Baryon overdensity, Star formation
- 2. UV continuum RT (LICORICE) \Rightarrow $T_k(\vec{x}, z), x_{HI}(\vec{x}, z)$
- 3. Ly- α RT (LICORICE) \Rightarrow $T_s(\vec{x}, z)$

movie movie

Result 1. 3D Line transfer is necessary

Local Ly- α flux $x_{\alpha}(\vec{x}, z)$ vs. homogeneous flux $x_{\alpha}(z)$ show up to 50% difference in δT_b locally Visible effect in the 3D powerspectrum when $\langle x_{\alpha} \rangle = 1$ (Directly observable by interferometers)

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

-

э

Result 2. x_{α} is not always $+\infty$

When $x_{\alpha} > 10$ (< $x_{HII} > \approx 0.04$), the error made on δT_b by assuming $x_{\alpha} = +\infty$ is smaller than $\sim 10\%$

(日)、

э

Result 3. Signal in absorption

Figure: Early (moderate Ly- α)

・ロト ・四ト ・ヨト ・ヨト

э.

Result 3. Signal in absorption

Figure: Later($x_{HI} = 0.5$)

X-ray heating

The Source Model

- QSOs, X binaries, SNe
- Soft X-ray photon 100eV to 2keV (Prichard & Furlanetto 2007)
- Spectral power index $\alpha = -1.6$ (Telfer et al 2002)
- 0.1% of *L_{tot}* to *L_{QSO}* and 99.9% to *L_{stellar}* (Glover & Brand 2003)

X-ray heating

Method

- Ray-tracing of X-ray photons (homogeneous background X)
- Redshifting photon, retarded time

$$\lambda_X \approx 4.9 ~ \left(\frac{E}{300 eV}\right)^3 \mathrm{Mpc}$$
 (comoving)

 Secondary ionization and heating by high energy electrons (Shull & van Steenberg 1985)

The evolution of T_k with X-ray heating

= 900

The evolution of T_k with X-ray heating

· ~ ~ ~

The evolution of T_k with X-ray heating

First conclusion \Rightarrow Preheating takes time!

э.

・ロト ・聞ト ・ヨト ・ヨト

Reference

S. Baek, P. Di Matteo, B. Semelin, F. Combes, Y. Revaz (A&A accepted) arXiv:0808.0925

Future Work

- 2×512^3 in 100 to 250 Mpc/h
- Helium + X-ray heating
- dv_r/dr effect
- Shock heating in coupled simulation

