Future of Life in the Solar System

Long-term Thinking

- Most of our current problems and challenges arise from short-term thinking
- How do we foster the long view?
 - The ten-thousand year clock
 - <u>http://www.longnow.org/projects/clock/</u>
 - Why 10,000 years?
 - Millions? Billions?
- What could we do on long time-scales?

Future of Life in Solar System Terraform other planets (Mars most likely)

Space Colonies

Solar Power from space, Dyson spheres

Rockets: Principles and 4 quantities

Robots, Von Neumann Devices

Terraforming Planets

Seed other planets with "bio-engineered organisms"

These make the planet more habitable for humans

To terraform (need H₂O, O₂, O₃ in order of priority) e.g., Melt polar caps on Mars (10¹⁴ tons of ice) 2500 to 10000 years to build up atm. pressure, get liquid water

Terraformed Mars

Ocean in northern lowlands covers 25% of planet

Space Colony (Island One)

Solar Power Satellites

SPACE SOLAR POWER

SOLAR ENERGY COLLECTOR AND CONVERTER

> SOLAR ENERGY • INEXHAUSTIBLE • CLEAN • EXPORTABLE

MICROWAVE

SPACE POWER STATION-150 KM² GROUND RECEIVERS-100 KM² EACH POWER OUTPUT-10 MILLION KILOWATTS

MICROWAVE COLLECTORS AND POWER DISTRIBUTION

Solar Power Satellite

Word of the Day: Dyson sphere

Dyson Spheres

- Ultimate version of solar power satellites
- Surround the sun with collectors
- Have access to nearly all of solar luminosity
 2 x 10²⁶ Watts
- What if another civilization did this?
 - Dyson's idea, so called Dyson spheres
 - It would look like an infrared source
 - Hard to distinguish from young or old stars surrounded by dust

1. Exhaust velocity $V_e \ (km \ s^{-1})$ $V_e \ \propto \ \sqrt{\frac{T}{M}}$

Recall Newton's second law: F = (dp/dt) = m (dv/dt) = m a, if m constant If v constant, but m is not, F = (dm/dt) v

- 2. Thrust (Force) $F = (dM/dt) V_e$ (Newtons, Pounds) dM/dt = rate at which mass is ejected
- 3. Mass ratio
 - $R_M = Total Mass at Takeoff$ Mass After Fuel Used Up

High mass ratios mean you need a lot of fuel to get a certain payload accelerated to a certain speed

4. Specific impulse

(s.i.)

Thrust(NewRate of Fuel UsePou

(Newtons/kg/sec, Pounds/Pounds/sec = "sec")

A measure of efficiency. Highest possible s.i. with chemical fuels is < 500

To escape gravity $v > v_{esc} = 11.2 \text{ km s}^{-1}$ (7 miles/sec)

This is very difficult for the gravity of the Earth So we use Multi-stage Rockets

An Example

Space Shuttle: Mass = 2×10^6 kg

 $\begin{array}{ll} F_{thrust} &= 29 \times 10^6 & \text{Newtons} \\ R_M &= 68 \text{ for actual payload} \\ \text{s.i.} &= 455 \text{ sec.} & \sim \text{best possible with} \\ & \text{chemical fuel} \end{array}$

For more adventurous exploitation of Solar System Probably want Nuclear Propulsion Fission could give s.i. = 1.5×10^6 sec (in practice, more likely to get 20,000 sec)

Future of Humans in Space

Exploration Vision in 2004

- First return to Moon, then Mars
- Under-funded, side-effects on other programs
- Fundamental Redirection in 2011
 - http://www.nasa.gov/missions/solarsystem/explore_main.html
 - Return to Moon, travel to Mars essentially put on hold for now
 - But rocket development continues

New Vehicles

- Space shuttle has been retired
- Look to commercial ventures for access to space station
- Go "back" to Apollo-like capsules (Orion) on big rockets (Space Launch Systems)
 - Twice the volume of Apollo (4-6 crew)
 - New technology, more flexible, automation
 - Launch-abort system
 - Saves crew if problem during launch
 - Solar panels for long term power

Robots

- Martian landers and rovers
- Likely to use for most solar system exploration
- Ultimate is Von Neumann device
 - Self-repairing, self-replicating robot
 - A kind of life?
- Human-machine hybrids
 - Artificial body parts increasingly common

Future of solar system

- Think about the long term future of solar system
- Will we colonize other planets?
- Mine asteroids for metals?
 - Could we detect an ET civilization doing this?
 - Forgan and Elvis 2011: hard to be sure
 - Look for chemical or other anomalies