Alternative Ideas for the Origin of Life

Something else...

- Neither the chicken nor the egg came first
- Transitional forms that were later discarded
- Remember genetic takeover

Maybe the "egkin"? Some experiments with peptide nucleic acid (PNA). PNA: Peptide backbone with bases

Can act as template for polymerization of RNA From activated nucleotides (Böhler, et al., *Nature*, **376**, 578 & comments by Piccirilli, pg. 548 17 Aug. 1995

PNA could be simpler to form under prebiotic conditions Main point is that a simpler thing (not necessarily PNA) could have preceded RNA

PNA

Threose Nucleic Acid (TNA)

- Threose is one of two sugars with a foursided ring
- Fewer issues with incorrect linkages, selection of correct handedness
- Replace ribose sugar in RNA with threose
- Can base pair with RNA
- Could have preceded RNA

Membranes

- Membranes provide enclosure

 Also fundamental for metabolism
- Membranes never arise from scratch
 - Always passed down and added to
 - All derived from ancestral cell
- T. Cavalier-Smith proposes membranes first
 - Plus nucleic acid formed "ob-cell"
 - Merger of 2 ob-cells formed first cell

Focus on Energy

G. WächtershäuserInorganic - organic connectionFeS₂ (Iron pyrite)

Attracts negatively charged molecules Surface catalysis provides energy via formation from FeS + H₂S

Scene is hot sulfur vents on sea floor Some successes in simulations Amino acids formed peptide bonds

Thioester World

- 1. Need precursor to RNA world
- Need energy conversion
 Protometabolism
 Background:

C. de Duve In <u>Vital Dust</u>

Hydroxyl + Carboxyl

Thiol + Carboxyl

Thiols involved in metabolism, particularly in ancient pathways

Also can catalyze ester formation by group transfer Reactions e.g. peptide bonds

Catalytic Multimers

"Multimer" short peptides and esters (NH₂) (OH) of amino acids and hydroxy acids

Will form from thioesters. Assume some catalytic ability, lead to protometabolism

Energy Sources

Basic need is hydrogen atoms (or electrons in excited states)

In pure water	$\frac{H^+ + OH}{H_2O}$	more if acidic
e [–] + H ⁺ –	→ H*	excited H

Now chlorophyll + sunlight

On early Earth? 1. UV light + Fe⁺² \longrightarrow Fe⁺³ + e⁻ e^- + H⁺ \longrightarrow H for reactions 2. H₂S in H₂O \longrightarrow SH⁻ $2SH^- \longrightarrow S_2^{-2}$ + H₂ Fe⁺² + S₂⁻² + FeS₂ iron pyrite

Transition to Phosphate

Remember that energy currency in life now is ATP <u>A</u>denosine <u>Triphosphate</u> used to make bonds, remove H₂O

Earlier, inorganic phosphate p–p diphosphate or polyphosphate still involved in ATP reactions

RNA TAKES OVER

age—will be followed by GUC. This AGUC sequence is complementary to the terminal sequence written in antiparallel fashion, and will cause the chain to double up as follows:

Assume now that this folded chain is subject to elongation, by the addition of new nucleotides, from right to left, to the U end. The presence of G next to the A paired with the terminal U is likely to favor the addition of a complementary C over that of the other three possible nucleotides. Repeat the process and you get U added opposite A, G opposite C, G again opposite the next C, and so on. What you get is the formation of a stretch complementary over all its length to the other end of the molecule:

Summary of Proto-Life Development

<u>Stage</u>	<u>Proteins</u>	<u>Halfway # 1</u> Peptide Nucleic Acids	<u>Halfway # 2</u> RNA Ribozyme	<u>Nucleic Acids</u>	
Monomers	Amino Acids	Bases Amino Acids	Ribose Sugars Bases Phosphates Amino Acids	Ribose Sugars Bases Phosphate	
Polymerization	Proteinoids	Short strands of PNA's	Short strands of RNA + amino acids	Short strands of RNA	
Replication	?	Affinity for complementary bases + ease of peptide bonding	Affinity for complementary bases	Affinity for complementary bases	
Pre-life	Proteinoids + RNA?	Separation of proteins and nucleic acids	Separation of nucleic acids and protein parts	RNA adapts proteinoids as needed	
Life	Proteins	Disappears	Disappears	DNA and RNA	

Other ideas

A different initial genetic substance + genetic takeover e.g., clay life

Panspermia Various versions

Creationism

Clay Life

A. G. Cairns-Smith

Silicate Life? Early Genetic Material O = Si = O but O can make another bond instead

$$\begin{array}{c}
 0 \\
 0 \\
 0 \\
 0
\end{array} \xrightarrow{} 0 \\
 0$$

silicates can provide a variety of minerals

Layers - clay Also occasional impurity (Al, Mg, ...) Can grow by adding dissolved material Tends to copy pattern of impurities in adjacent layers. Could this be a kind of reproduction? Defects - different impurity, ... (mutations?) Sheets can separate - move - and then "reproduce"

Advantages Clay clearly present Simpler genetic structure Crystal growth occurs naturally Problem How to get to life as we know it

Clay Life \xrightarrow{f} Life

Clay life begins to synthesize, use "organic" [carbon] molecules Clays do have some catalytic activity

Genetic takeover organics ----> protein/RNA mechanisms

Clay discarded

- 1. Surviving clay life unlikely
- 2. New clay life maybe in some places
- 3. Demonstrate in lab

Not much further development of this idea.

Panspermia

• Life arose elsewhere and was delivered here

- Original idea was bacterial spores
- Hoyle and Wickramasinghe
 - Life originates on dust grains, comets, ...
- Or on another planet (meteorites from Mars)
- Borates help form RNA
- Evaporated seas, more common on Mars
- Directed panspermia
 - Crick and Orgel (tongue in cheek)
 - Earth seeded by intelligent ET

Creationism

- Traditional biblical literalism
- Intelligent design
 - Seeks evidence of design in complexity
 - Current version of creationist movement
 - Hoyle and Wickramasinghe later ideas
 - Life designed by silicon chip
 - Where did the chip come from?
- None of these are scientific theories
 - The key is whether they can be tested

From "Scientific Creationism" by Henry Morris					
Uniformitarianism	Bible				
Matter existed	Matter created by God				
in the beginning	in the beginning				
Sun and stars	Earth before the sun				
before the earth	and stars				
Land before the oceans	Oceans before the land				
Sun, earth's first light	Light before the sun				
Contiguous atmosphere	Atmosphere between				
and hydrosphere	two hydrospheres				
Marine organisms,	Land plants, first life				
first forms of life	forms created				
Fishes before fruit trees	Fruit trees before fishes				
Insects before birds	Birds before insects				
Sun before land plants	Land vegetation before the sun Birds before reptiles				
Woman before man	Man before woman				
(by genetics)	(by creation)				
Rain before man	Man before rain				
"Creative" processes still continuing	Creation completed				
Struggle and death necessary antecedents of man	Man, the cause of struggle and death				

Myth (Mythos) **Revealed truth unquestioned**

Science (Logos) **Provisional truth** Skepticism essential (falsifiability) Method important Interplay:

Paradigm

Experiment/

observation

Artificial Life?

- Polio virus constructed from "scratch" in 2002
- Entire bacterial genome (not the bacterium) constructed from scratch in 2008
 - 582,970 base pairs
- Could we create a bacterium from scratch?
- Far too complex for current abilities
- Chromosome (272,871 base pairs) for a eukaryote (yeast) constructed in 2014

Exotic Life Forms?

Antidote to Earth Chauvinism

- 1. Different organic molecules (e.g., PNA) possibility of life based on other polymers
- 2. Not based on Carbon
 Silicon (Si) instead of Carbon?
 (also 4 bonds)
 & more (135 ×) abundant on Earth

Negatives for replacing carbon with silicon:

- a. C C bond 2 × stronger than Si Si
- b. Si O stronger than Si Si forms silicates, not ... Si - Si - Si ...
- c. C forms multiple bonds (e.g. $C \equiv N$) Si rarely does
- d. C + O forms CO or CO_2 (gas further reacts) Si + O \longrightarrow SiO₂ - silicate rocks
- ⇒ Si unlikely to replace C in "organic" molecules but could forms of SiO₂ produce clay life?

Chemistry

3. Other Solvents Earth: Liquid water

273-373 K

Alternatives:		T _{freeze}	T _{boil}
Ammonia	NH ₃	195	240
Methyl Alcohol	CH₃OH	179	338
Methane	CH_4	91	109
Ethane	C_2H_6	90	184

Water is better solvent Also better for temperature regulation But others could play a role in colder zones extend CHZ?

4. Non-chemical life?

Disembodied intelligence Black cloud life?

Other forces Strong nuclear force?

 $\tau \sim 10^{-15} \text{ s}$

Gravity?

Estimates for f_{ℓ}

Possible range is very large

Perhaps 10⁻⁶ (one in a million) to 1 (all)

Arguments for large value

Life part of overall evolution in complexity
Arises naturally from interplay of forces

Estimates for f_{ℓ}

Arguments for small value

May need more than liquid water
Large tides, so large moon
Dry land (for polymerization)

Life may be a fluke

A rare statistical event

Can we estimate f_{ℓ} from early origin of life?

Very ancient microfossils (now disputed)
 ⇒Life arose as early as 3.8 × 10⁹ yr ago Some evidence for life 4.1 x 10⁹ yr ago (isotopes)
 [soon after end of heavy bombardment]

Lineweaver & Davis argued: Early origin $\Rightarrow f_{\ell} > 0.33$ For suitable planets older than 1 × 10⁹ yrs. Statistics from <u>one</u> example! Others have disputed this conclusion

What is your choice and why?

- The most uncertain factor so far (f_{ℓ})
- Think about various ideas for origin of life
- Put together a plausible story for the origin of life

Can use parts of various ideas, but need to be consistent.