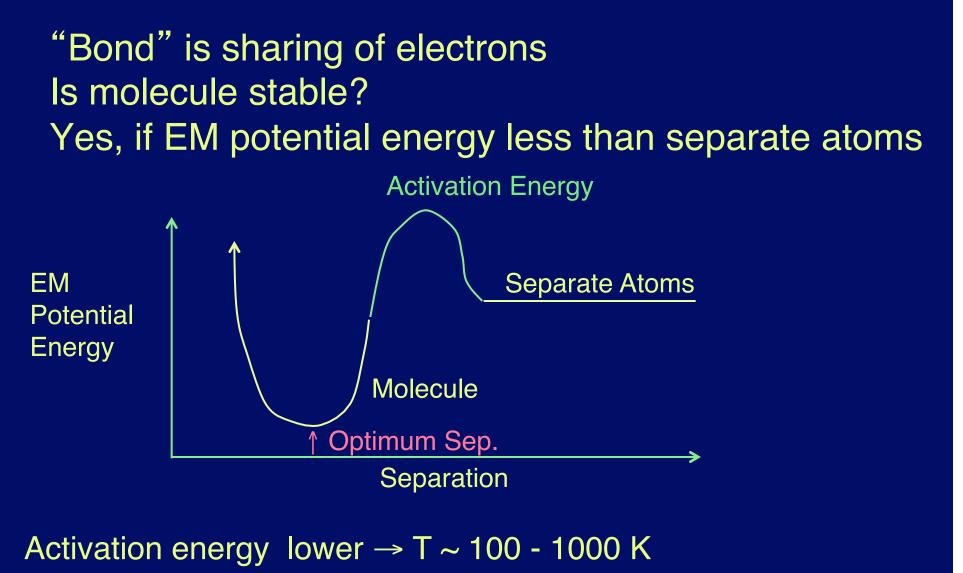
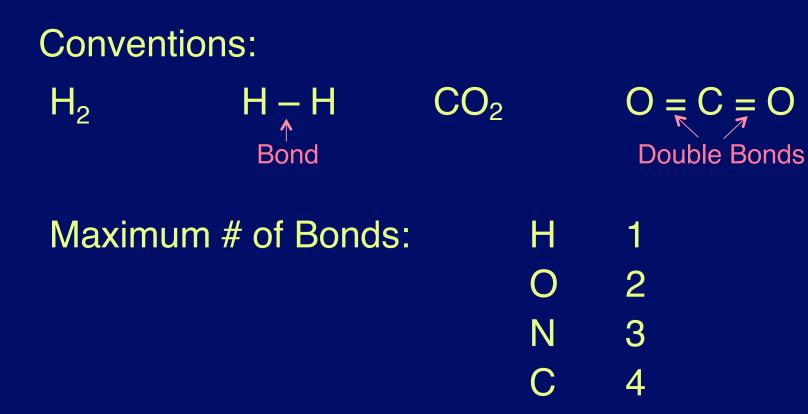

Cosmic Evolution, Part II Heavy Elements to Molecules


First a review of terminology:

Molecule: Repulsive ~ Attractive


More delicate than atoms, can be <u>much</u> more complex

(Room Temperature)

Questions

- Why is room temperature around 300 K?
- How commonly is this temperature found in the Universe?

Carbon very versatile → Complex chemistry

Interstellar Molecules

Exist as gas (individual molecules)A few known in 1930'sMany more since 1968 - Radio astronomy

Rotation

Badio Telescope
Vibration

Vibration

Infrared Telescope

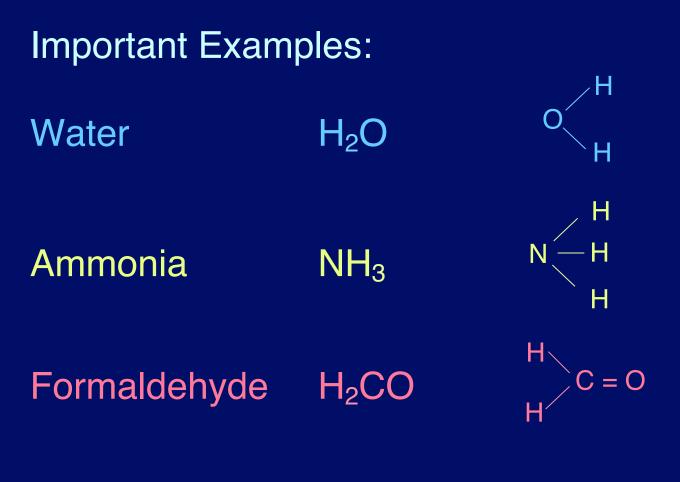
Appendix 2

Interstellar Molecules

	Species	Name	Prodes	Name	Species Name Species		
	Species	Nalle	Species	Name	Species	Name	Species
	H ₂	molecular hydrogen	CO2	carbon dioxide	H ₂ COH ⁺	protonated formaldehyde	HC ₅ N
	C ₂	diatomic carbon	CO ₂ OCS	carbonyl sulfide	SiH4	silane*	
	CH	methylidyne	SO ₂	sulfur dioxide			C7H
	CH ⁺	methylidyne ion	SiC ₂	silicon dicarbide*	C ₄ Si	•	HCOOCH
	CN	cyanogen	SiCN		C5	pentatomic carbon*	CH ₃ C ₃ N
	00	carbon monoxide	AICN		<i></i>		
	CO+	carbon monoxide ion	C ₂ S		C5H	pentynylidyne	CH ₃ COO
	ČŠ	carbon monosulfide	C20	dicarbon monoxide †	C5N		H ₂ C ₆
	OH	hydroxyl	C ₃	triatomic carbon*	C_2H_4	ethylene*	CH ₂ OHC
	HC1	hydrogen chloride	MgCN	magnesium cyanide*	H ₂ CCCC	butatrienylidene	
	NH	-,	MgNC	magnesium isocyanide*	CH ₃ OH	methanol	CH ₃ C ₄ H
	NO	nitric oxide			CH ₃ CN	methyl cyanide	CH ₃ CH ₃
	NS	nitrogen sulfide	NaCN	sodium cyanide*	CH ₃ NC	methyl isocyanide	CH ₃ CH ₂
	SiC	silicon carbide*	C.U.		CH ₃ SH	methyl mercaptan	CH ₃ CH ₂
	SiO	silicon monoxide	C ₂ H ₂	acetylene	NH ₂ CHO	formamide	HC7N
	SiS	silicon sulfide	C ₃ H	propynylidyne (l and c)			CaH
	SiN	silicon nitride	H ₂ CO	formaldehyde	HC ₃ HO	propynal	- Carr
	SO	sulfur monoxide	H ₂ CN		HC3NH ⁺		CH ₃ C ₄ Cl
	PN		HC ₂ N				CH ₃ CH ₃
	CP	•	NH ₃	ammonia.	CéH		
	SO ⁺	sulfoxide ion	HNCO	isocyanic acid	CH ₂ CHCN	vinyl cyanide	NH2CH2
	NaCl	sodium chloride*	HOCO+		CH ₃ C ₂ H	methylacetylene	CH2OHC
	AICI	aluminum chloride*	HCNH ⁺		CH ₃ CHO	acetaldehyde	
	KC1	potassium chloride*	HNCS	isothiocyanic acid	CH ₃ NH ₂	methylamine	HCoN
	AIF	aluminum fluoride*†	C ₃ N	cyanocthynyl	C ₂ H ₄ O	ethylene oxide	
	FeO	iron monoxide	C30	tricarbon monoxide			HC11N
	HF		C ₃ S		CH ₂ CHOH	vinyl alcohol	
	SH		H ₂ CS	thioformaldehyde			
	** +		H ₃ O ⁺				
	H3 ⁺	protonated hydrogen	SiC ₃	hydronium ion	# Detended in	alan matellas anualance anhe	
	C ₂ H	cthynyl	5103			circumstellar envelopes only	
	CH ₂	methylene †	C.U	hands diama d	† tentative		
	HCN	hydrogen cyanide	C4H	butadiynyl			
	HNC	hydrogen isocyanide	C ₃ H ₂	cyclopropenylidene			
	HCO	formyl	H ₂ CCC	propadienylidene			
	HCO+	formyl ion	HCOOH	formic acid			
Molecula	HCS ⁺	thioformyl ion	CH ₂ CO	ketene			
lons	HOC+	isoformyl ion †	HC ₃ N	cyanoacetylene			
	N ₂ H ⁺	protonated nitrogen	HNC ₃				
	HNO	nitroxyl	CH ₂ CN	cyanomethyl			
		water	NH ₂ CN	cyanamide		Le at Anna	
	H ₂ O H ₂ S		CH ₂ NH	methanimine		k at Appe	÷[](]])
		hydrogen sulfide	HC2NC				
	H ₂ N	hydrogen nitride	CH4	methane			
	N2O	nitrous oxide			Ihid	s is an old	1 VOr
					- 1116	5 13 al 1 UK	

Important Probe of conditions

173


- Discovered in Infrared - Discovered in UV ---- Relevant to the Origin of Life

methyl formate CH N methylcyanoacetylene acetic acid OH ICHO glycolaldehyde methyldiacetylene H I30 dimethyl ether I2CN ethyl cyanide I2OH ethanol cyanohexatriyne CN † 13CO acetone H2COOH glycinet ICH2OH ethylene glycol cyano-octa-tetra-yne cyano-deca-penta-yne

Name

cyanodiacetylene

x 2 rsion

Others of Note: CO Most common after H₂ HCN, HC₃N, ... HC₁₁N \rightarrow Carbon chains CH₄ (Methane) PAHs (Polycyclic aromatic hydrocarbons)

3 Lessons

- Complexity (Up to 13 atoms) is extraterrestrial May be more complex (Hard to detect) Glycine claimed in 1994, but, so far, not confirmed Polycyclic Aromatic Hydrocarbons (PAHs) (Infrared evidence)
- 2. Dominance of Carbon Carbon Chemistry not peculiar to Earth
- 3. Formation & Destruction <u>Analogous</u> to early Earth

Protection by dust grains: scatter and absorb ultraviolet

Dust particles

Studies of how they scatter and absorb light (Ultraviolet \rightarrow Visible \rightarrow Infrared)

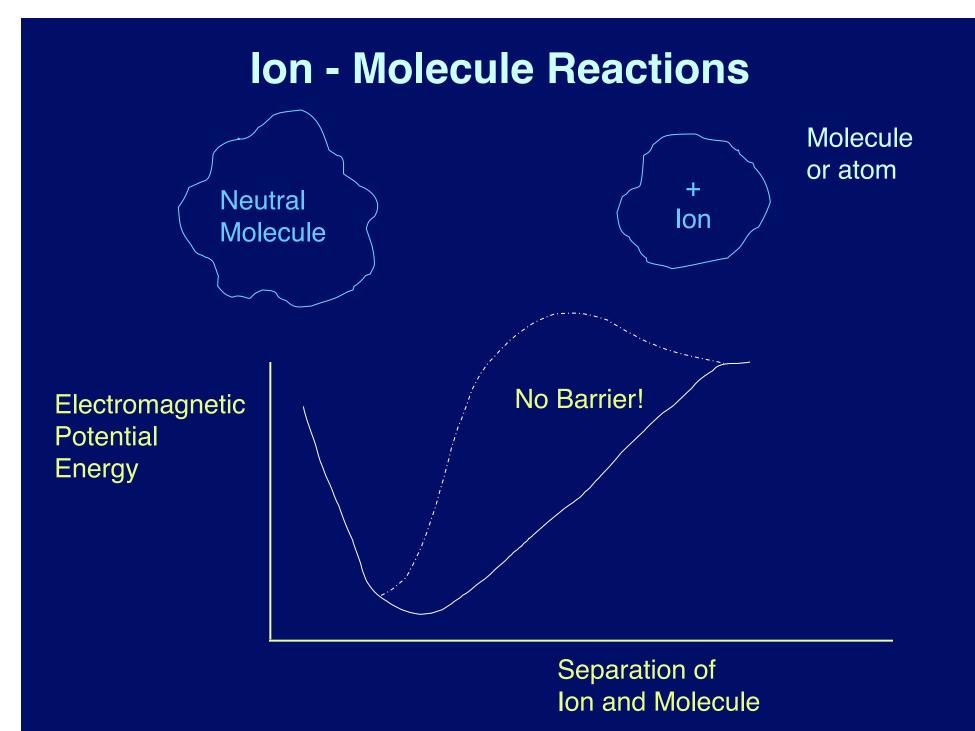
 \Rightarrow Two types, range of sizes up to 10⁻⁶ m

CarbonSilicatesPAHs \rightarrow SootSi + O + Mg, Fe, ...

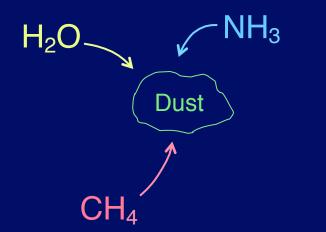
Both Produced by old stars

Formation of Interstellar Molecules

1. H₂

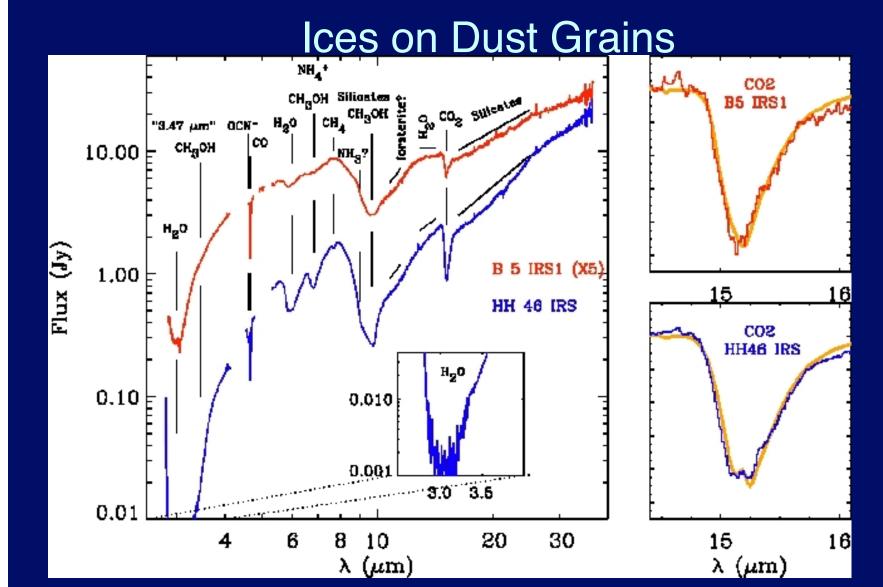

Must lose the potential energy difference before it falls apart (~ 10⁻¹⁴ s) Collisions: OK in lab, too slow in space

Emit photon: <u>very</u> slow for H₂ (10⁷ s) H + H + catalyst = H₂ + catalyst surface of dust grain H_2 Dust H_2


Formation of Interstellar Molecules

2. More complex molecules Problem is activation energy barrier T ~ 10 K << Barrier Use reactions without activation energies e.g. Molecular ions, like HCO⁺

> Cosmic Ray $\rightarrow H_2 \rightarrow H_2^+$ $H_2^+ + H_2 \rightarrow H_3^+ + H$ $H_3^+ + CO \rightarrow HCO^+ + H_2$ $XH^+ + e^- \rightarrow X + H$ Energy + simple mol. \rightarrow Reactive mol. More complex



Molecules on Dust Grains

Stick on grains "ice"

Infrared observations show this: as molecules Vibrate, absorb infrared e.g. H_2O absorbs at 3×10^{-6} m CH_4 absorbs at 8×10^{-6} m

Implications

- 1. Similar (Carbon-Dominated) Chemistry
- 2. Direct Role in Origin of Life?
- 3. Formation + Destruction analogous to Early Earth

Roles of Dust

- 1. Protection from UV
- 2. H_2 Formation
- 3. Freeze-out \rightarrow Mantles of Ice H₂O, NH₃, CH₄, CO₂, HCOOH, ... \uparrow Methane

Star Formation

First factor in Drake Equation: The rate of star formation

Estimate of Average Star Formation Rate (R_{*})

- $R_{\star} = \frac{\text{\# of stars in galaxy}}{\text{lifetime of galaxy}} = \frac{N_{\star}}{t_{\text{gal}}}$
- N_{*}: Count them? No Use Gravity (Newton's Laws) Sun orbiting center of galaxy at 270 km s⁻¹ (167 miles per second)

Kinetic energy = $\frac{1}{2}$ gravitational potential energy $\frac{1}{2}$ M_☉ v² = $\frac{1}{2}$ $\frac{G M_g M_{\odot}}{R_g}$ Distance of Sun from center of galaxy $\frac{R_g v^2}{G} = M_g$

Estimate of Average Star Formation Rate (R*)

 $\begin{array}{l} (\mathsf{R}_{g} = 28,000 \text{ ly}) \rightarrow \mathsf{M}_{g} = 1.4 \times 10^{11} \text{ M}_{\odot} \\ \text{Add mass outside Sun's orbit} \rightarrow \mathsf{M}_{g} \simeq 4.6 \times 10^{11} \text{ M}_{\odot} \\ \text{Most is dark matter; Models indicate } 8 \times 10^{10} \text{ M}_{\odot} \text{ in stars} \\ \mathsf{N}_{\star} \simeq \underbrace{\mathsf{M}_{g}}_{\text{Avg. mass of star}} = \underbrace{8 \times 10^{10}}_{0.5} = 16 \times 10^{10} \\ \end{array}$

 $t_{gal} \simeq 10^{10} \text{ yr}$ (studies of old stars) $R_* \simeq \frac{16 \times 10^{10}}{10^{10}}$ stars = 16 stars per year

Current rate: 4 stars per year

Making an Estimate

16 stars per year is an average over history of Milky Way. Current rate is about 4 stars per year. Stars formed more rapidly early in history of Milky Way. Stars at least as old as the Sun are better candidates for intelligent life. Any number between 5 and 20 may be correct for our purposes, but understand the way we estimated it and the uncertainties.

Star Formation

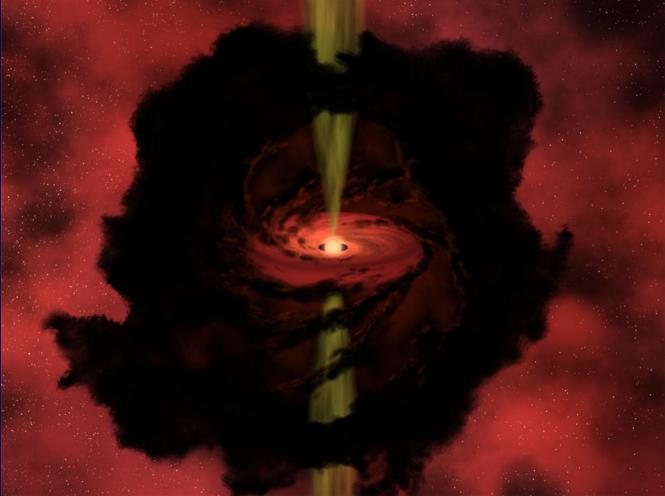
Current Star Formation

Molecular Clouds

Composition

- H₂ (93%), He (6%)
- Dust and other molecules (~1% by mass)
 - CO next most common after H₂, He
- Temperature about 10 K
- Density (particles per cubic cm)
 - $\sim 100 \text{ cm}^{-3} \text{ to } 10^6 \text{ cm}^{-3}$
 - Air has about 10¹⁹ cm⁻³
 - Water about 3 x 10²² cm⁻³
- Size 1-300 ly
- Mass 1 to 10⁶ M_{sun}

A Small Molecular Cloud


Current Star Formation

- Occurs in gas with heavy elements
 - Molecules and dust keep gas cool
 - Radiate energy released by collapse
 - Stars of lower mass can form
 - Mass needed for collapse increases with T
- Star formation is ongoing in our Galaxy
 - Massive stars are short-lived
 - Star formation observed in infrared

Visible to Infrared Views

Artist's Conception

Features: Dusty envelope Rotation Disk Bipolar outflow

R. Hurt, SSC

The Protostar

- Evolution of the collapsing gas cloud
 - At first, collapsing gas stays cool
 - Dust, gas emit photons, remove energy
 - At n ~ 10^{11} cm⁻³, photons trapped
 - Gas heats up, dust destroyed, pressure rises
 - Core stops collapsing
 - The outer parts still falling in, adding mass
 - Core shrinks slowly, heats up
 - Fusion begins at T ~ 10^7 K
 - Protostar becomes a main-sequence star

Summary

- Cosmic evolution builds complexity to molecules and dust
- Energy + simple things leads to complexity
- Stars form in clouds of molecules and dust
- We have estimates for the first factor in the Drake Equation, R*
- Understand the arguments used to get this estimate