# Evaluating your Drake Equation

#### **Basic Ideas**

- Number of Civilizations in our Galaxy

  Product of rate of emergence and L
  Running product gives rate for each step
  Until L, we have rates
  Through f<sub>c</sub>, we get "communicable"

  civilizations
  - Multiplying by L gives the number (N)
    - Assumes "steady state" between birth and death of civilizations

#### Drake Equation:

## $N = R \star f_p \, n_e \, f_\ell f_i \, f_c \, L$

number of communicable civilizations in our galaxy Ν Rate at which stars form R \* f<sub>p</sub> Fraction of stars which have planetary systems = Number of planets, per planetary system, n<sub>e</sub> = which are suitable for life  $f_{\ell}$ Fraction of suitable planets where life arises = f<sub>i</sub> Fraction of life bearing planets where intelligence develops  $f_c$ Fraction of planets with intelligent life which develop a = technological phase during which there is a capacity for and interest in interstellar communication Average lifetime of communicable civilizations L = Average distance to nearest civilization r 

## Treat the Galaxy as a Thin Cylinder



Distance to Nearest Neighbor1. Assume civilizations spread uniformly but randomly through galaxy



r = radius of imaginary sphere centered on us that touches nearest civilization search vol ∝ r<sup>3</sup> ⇒ r =  $\frac{10^4 \ell y}{N^{1/3}}$ 

#### If the Search Sphere gets too big...



If N < 8000, r from previous formula is 500  $\ell$ y About equal to thickness of Galaxy

Use cylinder for search vol  $\propto r^2 h$ so  $r = 5 \times 10^4 \ell y$  $N^{1/2}$ 

#### Happy Feller



|           | R  | <b>f</b> p | n <sub>e</sub> | $f_\ell$ | f <sub>i</sub> | f <sub>c</sub> | L                   | Ν                    | r              |
|-----------|----|------------|----------------|----------|----------------|----------------|---------------------|----------------------|----------------|
| Estimate  | 20 | 1          | 1              | 1        | 1              | 1              | 5 × 10 <sup>9</sup> | 1 × 10 <sup>11</sup> | 2.2 <i>l</i> y |
| Birthrate | 20 | 20         | 20             | 20       | 20             | 20             |                     | 1                    |                |

62.5% of stars

If N > 8000,  $r = \frac{10^4 \text{ light years}}{N^{1/3}}$ If N <8000,  $r = \frac{5 \times 10^4 \text{ light years}}{N^{1/2}}$ 

## Angela Angst



|           | R | f <sub>p</sub> | n <sub>e</sub> | $f_\ell$             | f <sub>i</sub>       | f <sub>c</sub>       | L   | Ν                    | r |
|-----------|---|----------------|----------------|----------------------|----------------------|----------------------|-----|----------------------|---|
| Estimate  | 5 | 0.1            | 0.1            | 0.01                 | 0.01                 | 0.01                 | 100 | 5 × 10 <sup>-6</sup> |   |
|           |   |                |                |                      |                      |                      |     |                      |   |
| Birthrate | 5 | 0.5            | 0.05           | 5 x 10 <sup>-4</sup> | 5 × 10 <sup>-6</sup> | 5 × 10 <sup>-8</sup> |     |                      |   |
|           |   |                |                |                      |                      |                      |     |                      |   |

Never two civilizations at same time

If N > 8000,  $r = \frac{10^4 \text{ light years}}{N^{1/3}}$ If N < 8000,  $r = \frac{5 \times 10^4 \text{ light years}}{N^{1/2}}$ 

# Mr. Average Guy



|                                                             | R  | <b>f</b> p | n <sub>e</sub> | $f_\ell$                                                | f <sub>i</sub> | f <sub>c</sub> | L                                                               | Ν                     | r   |
|-------------------------------------------------------------|----|------------|----------------|---------------------------------------------------------|----------------|----------------|-----------------------------------------------------------------|-----------------------|-----|
| Estimate                                                    | 10 | 0.5        | 0.89           | 0.5                                                     | 0.7            | 0.6            | 1 × 10 <sup>6</sup>                                             | 9.4 × 10 <sup>5</sup> | 100 |
| Birthrate                                                   | 10 | 5          | 4.45           | 2.23                                                    | 1.56           | 0.94           |                                                                 |                       |     |
| If N > 8000, $r = \frac{10^4 \text{ light years}}{N^{1/3}}$ |    |            |                |                                                         |                | ( 1.6          | , ~1 out of<br>0 × 10 <sup>5</sup> sta<br>0 × 10 <sup>5</sup> ∶ | ars                   |     |
| If N < 8000,                                                |    |            | r =            | $r = \frac{5 \times 10^4 \text{ light years}}{N^{1/2}}$ |                |                |                                                                 |                       |     |

### **Evaluating YOUR Drake Equation**

- Almost no answers are wrong
  - It must be possible for us to exist
  - N must be no greater than the number of stars in the Galaxy
    - May imply limit on L
- Ways to evaluate:
  - Plug into equations
  - Use calculator on web
    - <u>http://www.as.utexas.edu/astronomy/education/drake/</u> <u>drake.html</u>
  - Ask us for help

#### Your Drake Equation





#### Points to bear in mind

- r is based on assuming spread uniformly
   Could be less if closer to center of MW
- r is based on averages
  - Could be closer but unlikely
- r is less uncertain than N
- Since signals travel at c, time = distance in ly
- If L < 2r, no two way messages