Evaluating your Drake Equation

Basic Ideas

- Number of Civilizations in our Galaxy
- Product of rate of emergence and L
- Running product gives rate for each step
- Until L, we have rates
- Through f_{c}, we get "communicable" civilizations
- Multiplying by L gives the number (N)
- Assumes "steady state" between birth and death of civilizations

Drake Equation:

$$
N=R_{*} f_{p} n_{e} f_{c} f_{i} f_{c} L
$$

$\mathrm{N}=\quad$ number of communicable civilizations in our galaxy
$R_{*}=\quad$ Rate at which stars form
f_{p}
n_{e}
f_{l}

L = Average lifetime of communicable civilizations
$r \quad=\quad$ Average distance to nearest civilization

Treat the Galaxy as a Thin Cylinder

Distance to Nearest Neighbor

1. Assume civilizations spread uniformly but randomly through galaxy

Galaxy
Nearest civilization
$r=$ radius of imaginary sphere centered on us that touches nearest civilization
search vol $\propto r^{3}$

$$
\Rightarrow r=\frac{10^{4} \varrho y}{\mathrm{~N}^{1 / 3}}
$$

If the Search Sphere gets too big...

If $N<8000, \quad r$ from previous formula is 500 ay
About equal to thickness of Galaxy
Use cylinder for search vol $\propto r^{2} h$

$$
\text { so } \quad r=\frac{5 \times 10^{4} \mathrm{ey}}{\mathrm{~N}^{1 / 2}}
$$

Happy Feller

	R	f_{p}	n_{e}	f_{e}	f_{i}	f_{c}	L	N	r
Estimate	20	1	1	1	1	1	5×10^{9}	1×10^{11}	2.2 ly
Birthrate	20	20	20	20	20	20			

62.5% of stars
If $N>8000, \quad r=\frac{10^{4} \text { light years }}{N^{1 / 3}}$
If $N<8000, \quad r=\frac{5 \times 10^{4} \text { light years }}{N^{1 / 2}}$

Angela Angst

	R	f_{p}	n_{e}	f_{e}	f_{i}	f_{c}	L	N	r
Estimate	5	0.1	0.1	0.01	0.01	0.01	100	5×10^{-6}	---
Birthrate	5	0.5	0.05	5×10^{-4}	5×10^{-6}	5×10^{-8}			

Never two civilizations at same time
If $N>8000, \quad r=\frac{10^{4} \text { light years }}{N^{1 / 3}}$
If $N<8000, \quad r=\frac{5 \times 10^{4} \text { light years }}{N^{1 / 2}}$

Mr. Average Guy

If $N<8000, \quad r=\frac{5 \times 10^{4} \text { light years }}{N^{1 / 2}}$

Evaluating YOUR Drake Equation

- Almost no answers are wrong
- It must be possible for us to exist
- N must be no greater than the number of stars in the Galaxy
- May imply limit on L
- Ways to evaluate:
- Plug into equations
- Use calculator on web
- http://www.as.utexas.edu/astronomy/education/drake/ drake.html
- Ask us for help

Your Drake Equation

If $N>8000, \quad r=\frac{10^{4} \text { light years }}{N^{1 / 3}}$
If $N<8000, \quad r=\frac{5 \times 10^{4} \text { light years }}{N^{1 / 2}}$

Points to bear in mind

- r is based on assuming spread uniformly
- Could be less if closer to center of MW
- r is based on averages
- Could be closer but unlikely
- r is less uncertain than N
- Since signals travel at c, time = distance in ly
- If $L<2 r$, no two way messages

