Habitable Planets: 2 Estimating fs

Stellar Requirements (f_{s})

- We assume that our planet needs to orbit a star
- Leaves out planets around brown dwarfs
- Leaves out "nomad planets" (may be many)
- About 6\% of stars are white dwarfs (after all red giant phases). May be OK
- We will consider 5 sub-factors for f_{s}

1. Sufficient Heavy Elements

- Need for Terrestrial planets, bioelements
- 1st generation stars - No heavy elements: ruled out
- Next several generations, Population II - Few heavy elements: Probably ruled out
- But NOTE: planets found around very old star ($11 \times 10^{9} \mathrm{yr}$) with very few heavy elements!
- Few Stars are Population II

Do We Need A Lot of Heavy Elements?

Massive, close-in planets are found more commonly around stars with more heavy elements than Sun

Does not seem to apply for lower mass planets.

Can probably assume 1.0 for this fraction.

2. On the Main Sequence

- Means stable hydrogen fusion
- Stable Luminosity, stable planet temperature
- Red giants, later stages ruled out
- Except White dwarfs (end state)
- 0.99 OK if include WDs
- 0.94 OK if exclude WDs

Note Changing Scale

FIG. 1. Luminosity evolution of a $1 \mathrm{M}_{\odot}$ star of solar composition. Note that the scale is broken at 10 and 11 Gyr. The discontinuity at 11 Gyr is real and is due to the helium flash. The phases are: $M S=$ main sequence, $R G=$ red giant, $H B=$ horizontal branch, and $A G B=$ asymptotic giant branch. The final white dwarf phase is not iliustrated. Details of the evolution during the HB and AGB phases are omitted.

$$
r_{2}=\sqrt{\frac{L(t)}{S_{2}(T)}}
$$

What about White Dwarfs?

- Once they cool below 6000K,
- planet orbiting at 0.01 AU
- Orbital period around 12 hours!
- in CHZ for 8×10^{9} years
- How did planet get there?
- Survive red giant phase?
- Form again from debris?

3. Long Enough MS Lifetimes

- Main Sequence Lifetime long enough for intelligent life to evolve ($5 \times 10^{9} \mathrm{yr}$)
- Roughly speaking $L \propto M^{4}$
- Fuel $\propto M$
- Lifetime $\propto M / L \propto 1 / M^{3}$
- Big stars live fast, die young

Stellar Lifetimes

M (M_{\odot})
30
10
1/10

Lifetime (yrs)
2×10^{6}
3×10^{7}
6×10^{8}
1×10^{10}
2×10^{11}
3×10^{12}

Most Stars are Low Mass

- If we require at least $5 \times 10^{9} \mathrm{yr}$ on MS
- $M<1.25 \mathrm{M}_{\text {sun }}$
- 90% OK
- So this factor is 0.9

Fraction

Log M in units of $\mathrm{M}_{\text {Sun }}$

4. Stellar Mass Not too Low?

- Do terrestrial planets form around low mass stars (M dwarfs)?
- Latest evidence suggests yes
- HZ is much closer in
- Planets in HZ much easier to find
- Recent estimate: 0.3 to 0.5 planets in HZ per M dwarf, depending on definition of HZ

For Logarithmic Spacing, n_{p} independent of size

Higher L

Fig. 5. Evolution of the F around stars of different masses assuming that co starts are possible. Case critical fluxes were usea and the evolution was truncated at the end of t l main sequence phase.

Advantage: Very Long time in CHZ for low mass stars

Fig. 6. Evolution of the HZ around stars of different masses assuming that cold starts are not possible. Case 2 critical fluxes were used and the evolution was truncated at the end of the main sequence phase.

Problem for Lowest Mass Stars

- VERY low mass stars (say $M<0.3 \mathrm{M}_{\text {sun }}$)
- Take 1 Gyr ($1 \times 10^{9} \mathrm{yr}$) before nuclear reactions start
- Luminosity decreases slowly for 1 Gyr
- HZ moves in
- Planets in HZ for most of life may have lost their hydrogen, runaway greenhouse BEFORE steady luminosity phase
- Flares, radiation stronger
- Synchronous rotation likely

Synchronous Rotation (Same side always faces star)

$\mathrm{T} \propto\left(\frac{\mathrm{L}}{\mathrm{D}^{2}}\right)^{1 / 4} \propto \frac{\mathrm{~L}^{1 / 4}}{\mathrm{D}^{1 / 2}}$ Tidal Forces $\propto \frac{1}{\mathrm{D}^{3}}$
\Rightarrow As D decreases, Tidal forces become much more important

Cause synchronous rotation

Tidal Forces

Copyright © 2005 Pearson Prentice Hall, Inc.

Force greatest on side toward Moon, least on side away from Moon.

If rotation period not equal to orbital period, there is friction. That slows down rotation. Tides on Moon from Earth have made it rotate synchronously. Tides on Earth are slowing down rotation.

Constant day
\Rightarrow Atmosphere freeze-out?

May not happen if atmosphere thick enough
(0.1 Earth pressure)
$\mathrm{M}>0.5 \mathrm{M}_{\odot} \Rightarrow 0.25 \mathrm{OK}$
$\mathrm{M}<0.5 \mathrm{M}_{\odot}$ - may be bad choices, but not sure

FIG. 8. The ZAMS HZ (dark solid curve) as a function of stellar mass for Case 2 fluxes. The long-dash lines delineate the most probable terrestrial planet formation zone. The short-dash line is the radius for which an Earthlike planet in a circular orbit would be synchronously or slowly rotating as a result of tidal damping. Note that all such planets in the $H Z$ around M stars are within this radius.

5. Binary Stars

a) Unstable orbits

Unless two stars widely separated or very close

Need

$\frac{\text { Distance to Second Star }}{\text { Distance to Planet }}>\frac{7}{1}$ or $<\frac{1}{7}$

Or

Stable orbits around a Binary Star
b) Varying temperature in orbit also need ~7:1
c) Both stars on main sequence, M $<1.25 \mathrm{M}_{\mathrm{o}}, \ldots$

2/3 of all stars are binaries
$2 / 3 \sim$ "wide enough"
Binaries ruled out? $\mathrm{f}_{\mathrm{s}}<1 / 3$ (if you kept them for f_{p})
Not > 7 : 1 ruled out? $\mathrm{f}_{\mathrm{s}}<1 / 2$

Summary of factors

\(\left.$$
\begin{array}{|l|c|c|c|}\hline \begin{array}{l}\text { Stellar } \\
\text { Requirement }\end{array} & \text { Mass limit } & \text { Fraction OK } & \begin{array}{l}\text { Cumulative } \\
\text { Fraction }\end{array} \\
\hline & & & \\
\hline \text { Heavy Elements } & \ldots & 1.0 & 1.0 \\
\hline \begin{array}{l}\text { Possibly Stable } \\
\text { Temperature }\end{array}
$$ \& ··· \& 0.99

\hline \begin{array}{l}Main Sequence

Lifetime\end{array} \& (\mathrm{M}<1.25 \mathrm{M} \odot) \& 0.94 \mathrm{w} / \mathrm{o} WDs\end{array}\right]\)| 0.99 |
| :---: |
| Not Synchronous
 Rotation |
| Mot a binary $>0.5 \mathrm{M} \odot)$ |
| Nide separation
 binary |

Bottom Line

- Points 1 to 3 are pretty clear
- But don't matter much...
- Points 4 and 5 are less established
- And could matter a lot...
- Room for different estimates for f_{s}
- Range 0.06 to 0.89 OK
- Then final step:
$-\mathrm{n}_{\mathrm{e}}=\mathrm{n}_{\mathrm{p}} \mathrm{f}_{\mathrm{s}}$

What are we Learning from Kepler?

- In addition to f_{p}, Kepler getting information about planetary systems
- More and more low mass planets are seen in larger orbits
- Kepler was just getting to Earth-size planets in Earth-like orbits
- Pointing system failed
- Need to extrapolate from what we see so far

Information on Exoplanets

- Repeated Detections: Period of orbit
- Radius of orbit (Kepler's 3rd law)
- Transits: size
- Spectroscopic: mass (or lower limit)
- Both: Density = Mass/Volume
- Composition: gas giant, water world, terrestrial

Fig. 2 The (A) size and (B) mass distributions of planets orbiting close to G- and K-type stars.The distributions rise substantially with decreasing size and mass, indicating that small planets are more common than large ones.

Fig. 3 Masses and sizes of wellcharacterized planets.Extrasolar planets $(1,58,60)$ are shown as open red circles, whereas solar system planets are designated by open green triangles.

Current Status

- There are many planets with masses between Earth and Neptune.
- Called "super-Earths"
- Some may be "water worlds"
- Many planetary systems have planets much closer to their star than in solar system
- Earth-size planets in HZ: Recent estimate is 1 out of 5 , or $\mathrm{n}_{\mathrm{e}}=0.20$
- Warning: BIG extrapolation!

Habitability Reconsidered

- S. Seager: Science 340, 577 (2013)
- The diversity of exoplanets challenges traditional view of habitable zones.
- Different locations, densities, atmospheres suggest wider range of orbits for liquid water.
- Especially hydrogen atmospheres have strong greenhouse effect
- Extends HZ farther out, even to "rogue" planets

Fig. 2 The habitable zone.The light blue region depicts the "conventional" habitable zone for planets with N2-CO2-H2O atmospheres (9, 10).

Better than Earth?

- Paper by Heller and Armstrong
- Astrobiology 14, pg 50 (2014)
- What could be "super-habitable"?
- Slightly smaller, older star
- Longer stable temperature, time for life
- Slightly larger, slightly drier planet
- More "coastline" (deep oceans, continental interiors less hospitable)
- Drier planet makes wider HZ

Summary

- Factor f_{s} :
- heavy elements
- main sequence
- Mass not too high
- Mass not too low (?)
- Not binary? (or wide enough binary?)
- Exoplanets show diversity
- Super-Earths, water worlds, ...
- Superhabitable planets?

