Habitable Planets: Part 1 Estimating n_{p}

General Considerations

- Number of planets, per planetary system, suitable for life $\left(\mathrm{n}_{\mathrm{e}}\right)$
- Useful to break into 2 factors
$-n_{e}=n_{p} \times f_{s}$
- $n_{p}=n_{e}$ for stars like Sun
- f_{s} is fraction of stars that are suitable
- $f_{s} \leq 1$, but n_{e}, n_{p} can be >1

Key Requirement: a Liquid

- Need a liquid for a solvent
- Liquid phase needs particular range of temperature, pressure
- Pressure depends on gravity, hence mass
- Water $\left(\mathrm{H}_{2} \mathrm{O}\right)$ 273-373 K at Earth pressure
- Up to 647 K at higher pressure
- Methane $\left(\mathrm{CH}_{4}\right)$ 91-109 K at Earth pressure
- Ammonia $\left(\mathrm{NH}_{3}\right)$ 195-240 K at Earth Pressure

Water Phase Diagram

What Sets the Temperature?

- For solid objects in space
- Absorption and emission of light
- Heats and cools the object
- For a "blackbody"
- Absorption $\propto \mathrm{L} / \mathrm{d}^{2}$
- Emission $\propto \mathrm{T}^{4}$

L

- Radiative Balance
- Energy absorbed = Energy emitted

Planet Temperatures

1st approximation: A blackbody at a distance d from a star of luminosity L

Maximum temperature
$\begin{array}{ll}T=394 K\left(L / d^{2}\right)^{1 / 4} & L \\ \text { in } L_{\odot} \\ T \propto L^{1 / 4} d^{-0.5} & \end{array}$

Question

Question: Planet 1 has a temperature of 300 K . There is an identical second planet 4 times as far from the star as planet 1 . What will be the temperature of planet 2 ?

2nd approximation: A fraction of the light is reflected (not absorbed)
Call this fraction the albedo (A)

$$
T=394 K\left[\frac{(1-A) L}{d^{2}}\right]^{1 / 4}
$$

e.g. Moon $A=0.07 \quad T_{\max }=387$

$$
L=1 L_{\circ} \quad \text { correct to few } \%
$$

But Earth : $\mathrm{A}=0.39 \Rightarrow \mathrm{~T}_{\max }=342 \mathrm{~K}$ predicted $\mathrm{T}_{\text {max }} \leq 313 \mathrm{~K}$

3rd approximation:

Account for rapid rotation - $\mathrm{T}_{\max }$ less $\mathrm{T}_{\text {min }}$ more
close to $\mathrm{T}_{\text {avg }}$
$\mathrm{T}_{\text {avg }}=279 \mathrm{~K}\left[\frac{(1-\mathrm{A}) \mathrm{L}}{\mathrm{d}^{2}}\right]^{1 / 4}$
Earth: $\mathrm{A}=0.39 \quad \Rightarrow \quad \mathrm{~T}_{\text {avg }}=246 \mathrm{~K}$ Actual $\quad \mathrm{T}_{\text {avg }}=288 \mathrm{~K}$

4th approximation:
 Greenhouse effect

Consequences of Greenhouse Effect:

Raises $\mathrm{T}_{\text {avg }}$ (Earth) by about 40K

Otherwise $\quad \mathrm{T}_{\text {avg }}<\mathrm{T}_{\text {freeze }}$
\Rightarrow Frozen Planet

The Habitable Zone

- For fixed stellar luminosity, greenhouse effect
- A required temperature range
- For example, liquid water
- Translates to required range of distances from the star

But Greenhouse Effect could have a big impact on the size and location of HZ

Continuously Habitable Zone

- Nearly 5×10^{9} yrs for intelligent life on Earth
- CHZ is habitable for $5 \times 10^{9} \mathrm{yr}$
- Stars increase L during main sequence
- HZ moves out, CHZ is smaller than HZ at any given time
- For example, current Earth would have been frozen over when Sun was young
- Greenhouse effect must have been larger then

Note Changing Scale

FIG. 1. Luminosity evolution of a $1 \mathrm{M}_{\odot}$ star of solar composition. Note that the scale is broken at 10 and 11 Gyr. The discontinuity at 11 Gyr is real and is due to the helium flash. The phases are: $M S=$ main sequence, $R G=$ red giant, $H B=$ horizontal branch, and $A G B=$ asymptotic giant branch. The final white dwarf phase is not iliustrated. Details of the evolution during the HB and AGB phases are omitted.

$$
r_{2}=\sqrt{\frac{L(t)}{S_{2}(T)}}
$$

. Computer Models

$$
\text { Hart } \begin{array}{ll}
& C H Z \quad 0.95-1.01 \mathrm{AU} \\
& \Rightarrow \mathrm{n}_{\mathrm{p}} \lesssim 0.1
\end{array}
$$

Middle of the Road
Negative feedback \longrightarrow thermostat
T \nearrow Rainfall \nearrow
rock weathering \nearrow

Whitmire et al.
CHZ 0.95-1.5 AU

$$
\Rightarrow n_{p} \sim 1
$$

The Carbon Cycle without Life

Figure 7.3. Bchematic representation of the long-term global carton oycle showing the flows (hollow arows) of carbon that are important on timescales of more than 100 Kyr . Canbon is added to the atmosphere through metamorphic degassing and volcanic activity on land and ast mid-ocean ridges. Atmospheric carbon is used in the westhering of silicate minerals in a temperature-sensitive dissolution process; the products of this weathering are camied by rivers to the oceans. Carbonate sedimentation exacts carbon from the oceans and ties it up in the form of limestones. Pelagic limestones deposited in the deep ocean can be subducted and melted. Limestones deposited on continental crust are recyeled much more slowly - if they are exposed and weathered, their remains may end up as pelagic carbonates; if theyget caught up in a continental collision, they can be metamorphosed, liberating their CO_{2}.

The Carbon Cycle on Earth Now

Cold Starts?

- As Habitable Zone moves out
- Can you unfreeze a frozen planet?
- Will it become suitable for life?
- If not, HZ will shrink
- CHZ is smaller

Fig. 2. Evolution of the HZ around a $1 \mathrm{M}_{\mathrm{c}}$ star assuming that an ice covered planet that was initially beyond the outer HZ boundary can be cold started. The three cases shown are discussed in the text and correspond to the most conservative Case 1 (long dashes), the intermediate Case 2 (solid curves), and the least conservative Case 3 (short dashes).

Fig. 3. Evolution of the HZ around a $1 \mathrm{M}_{\odot}$ star assuming that an ice covered planet that was initially beyond the outer HZ boundary cannot be cold started until the stellar flux is greater than the critical greenhouse value. The three cases shown are discussed in the text and correspond to the most conservative Case 1 (long dashes), the intermediate Case 2 (solid curves), and the least conservative Case 3 (short dashes).

Snowball Earth

Increasing evidence that Earth nearly froze over twice
2.4 billion years ago \& 650-800 Myr ago

Climate can have dramatic changes

Apparently - these were ended by volcanic eruptions that put much more CO_{2} in atmosphere

What Else Do We Need?

- So far, we considered liquid water sufficient
- What else?
- Temperature range
- Pressure
- Salt concentration
- Acidity/alkalinity

Lower Limit to Temperature?

Some microbes survive for long periods in Antarctic ice
e.g. Lake Vostok - 2.5 miles below glacial ice in Antarctica Sample obtained in 2013, claims of 3500 species (microbes)
Lake thought to be under ice for last 15 Myr .
But contamination an issue. A supposedly pristine sample was collected in January 2015.

Lower limit is probably about $-20^{\circ} \mathrm{C}(253 \mathrm{~K})$ for active life

Upper Limit?

We have learned that some microbes can survive in pressurized water at T up to $400 \mathrm{~K}\left(120^{\circ} \mathrm{C}\right)$!

Such microbes have special adaptations to protect their heat-sensitive molecules

For complex life, upper limit seems to be $\sim 325 \mathrm{~K}$
$\sim 52^{\circ} \mathrm{C}$ or $126^{\circ} \mathrm{F}$

But is this limit just an accident of evolution on Earth?

Other Habitable Zones

Microbial Habitable Zone (MHZ)
Fixed by Range of T microbes can withstand
"Animal" Habitable Zone (AHZ)
"Animal" = complex, differentiated, multicellular life
Ward + Brownlee in Rare Earth note AHZ much smaller than MHZ

They also argue that parts of our Galaxy unsuitable for animal life

We will consider this last point under f_{i}

On the Optimistic Side

1. Sub-surface Water?

If you don't need photosynthesis, no need to be on surface

T increases with depth into Earth
\Rightarrow liquid water under "ground"
e.g. Mars? Europa (Moon of Jupiter)
$\mathrm{HZ} \longrightarrow$ 1.5 AU 5 AU
$\mathrm{n}_{\mathrm{p}} \sim 2 \sim 3$
2. Other Solvents
e.g. Titan (moon of Saturn) has some liquid methane $\left(\mathrm{CH}_{4}\right)$
$\mathrm{HZ} \longrightarrow 10 \mathrm{AU}$
$\mathrm{n}_{\mathrm{p}} \longrightarrow \sim 4$
3. Other planetary systems

Jupiter-like planets ~ 1 AU (in HZ)
Life on Moons?

Other requirements?

Pressure?
Bacteria on deep sea floor withstand up to 1000 atmospheres
But not "animal" life
Not too salty? - halophilic bacteria up to 33% salt solution
pH? -LOG [H ions]
pH 1

$$
\begin{array}{cl}
7 & \mathrm{pH} \mathrm{14} \\
\text { normal } & \text { alkali }
\end{array}
$$

acid

Almost all cells regulate pH to 7.7
$1 \longleftarrow$ microbes $\longrightarrow 13$

Again, microbes have adapted to just about any environment of Earth

The Importance of the Moon

The Moon makes the tides bigger than if only the Sun caused tides
May be important in the origin of life
The Moon stabilizes the Earth's obliquity

Varies regularly from 22.1 to 24.5 over 41,000 yrs.

Without the Moon, tugs from other planets could make it vary chaotically

Large obliquity could cause snowball Earth
Ward \& Brownlee

Only if a large supercontinent at the poles
Williams, Kasting, Caldeira

Summary

- Complex (animal) life requires "nicer" conditions than microbial life
- Microbes survive in wide range of conditions of T, p, pH, ...
- T set by L, d from star and greenhouse
- HZ and CHZ are important concepts
- Large moon good, but may not be essential
- So far, we assume like solar system

