Wednesday, April 2, 2014

Exam 3, Skywatch 3 returned Friday

Reading for Exam 4: Chapter 8 - Sections 8.1, 8.2, 8.5, 8.6, 8.10; Chapter 9: all except 9.6.3, 9.6.4

Exam 4, Monday, April 14

Review Thursday, April 10 by Jacob, 5:00 PM, RLM 7.104

Astronomy in the news:

Cosmos 3 had pretty cool graphics of an accretion disk around a black hole (but a hint of a conceptual issue we will get to shortly).

Update on new "nearby" supernova SN 2014J in M82

Nothing to Report

Lots of papers in preparation

Goal:

To understand how neutron stars behave in accreting binary systems.

For strong magnetic field matter connects to, flows *along* magnetic lines of force (can't flow across field lines of force)

This process automatically channels matter to *magnetic* poles

Matter slams into neutron star at the poles, gets hot, emits X-rays (but kills radio, gamma rays)

Rotation with tilted magnetic field can give X-ray "pulses" by the light house mechanism.

Note that will get X-rays from poles when accreting even if the magnetic poles are aligned with the rotation axis, just won't get lighthouse "pulses" (unlike radio mechanism that requires tilted poles to radiate at all).

Some neutron stars are in binary systems, they accrete mass through an accretion disk and produce *X-rays*. X-rays are produced even if the magnetic poles are aligned with the rotation axis, but may not get "pulses" from the light house effect.

To understand how neutron stars are observed as X-ray "pulsars."

Accretion onto *tilted* magnetic poles can give pulses of X-rays by "lighthouse" mechanism (or other "off-center" effect)

Neutron stars for Sky Watch

Single neutron stars: Geminga (Section 8.11) in Gemini

Gravitational radiation from pulsar in binary system - Aquila

X-ray pulsars, Her X-1 in Hercules, Cen X-4 in Centaurus

Goal:

To understand the nature of neutron stars with exceptionally large magnetic fields.

Soft Gamma Ray Repeaters - 6 known

One flared in the Large Magellanic Cloud galaxy, energy arrived in March 5, 1979.

Another flared in our Galaxy, energy arrived August 27, 1998, caused aurorae from 1000's of light years away.

Yet another flared in our Galaxy with energy arriving December 27, 2004, from the far side of the Galactic center, perhaps 10's of 1000's of light years away, brightest release of energy ever seen in the Galaxy, 100 times more powerful than August 1998 burst.

Magnetic eruption in neutron star [not necessarily in binary system.]

Theory - break patch of iron-like "crust" of neutron star that is threaded by magnetic lines of force, convert magnetic energy to heat (1998 burst) or completely rearrange magnetic field configuration, for instance by swapping north and south magnetic poles (2004 burst).

Require "wiggling" of very strong magnetic fields, 100 × Crab pulsar

 \Rightarrow *Magnetar* - very highly magnetic pulsar.

Anomalous X-ray Pulsars (AXP) also require very large magnetic fields, but have not been seen to burst, maybe old magnetars.

Origin of magnetars compared to "normal" pulsars not yet known.

Formation might be related to Cosmic Gamma-ray bursts (Chapter 11).

X-ray, Gamma-ray satellites should see many of these brightest bursts (December 27, 2004) in distant galaxies.

Skywatch Extra Credit Targets constellations only, not all visible

Magnetar Candidates

Name	Location	Rotation (seconds)	Year Discovered
SGR 0526-66	Large Magellanic Cloud	8.0	1979
SGR 1900+14	Aquila	5.16	1979
SGR 1806-20	Sagittarius	7.56	1979
SGR 1801-23	Sagittarius	-	1997
SGR 1627-41	Ara	6.4	1998
AXP 1E 2259+586	Cassiopeia	7.0	1981
AXP 1E1048.1-5937	Carina	6.4	1985
AXP 4U 0142+61	Cassiopeia	8.7	1993
AXP 1RXS J170849-400910	Scorpius	11.0	1997
AXP 1E 1841-045	Scutum	11.8	1997
AXP AX J1844-0258	Aquila	7.0	1998
AXP CXOU J010043.1-721134	Small Magellanic Cloud	8.0	2002
AXP XTE J1810-197	Sagittarius	5.5	2003
AXP CXO J164710.2-455216	Ara	10.6	2005

Magnetars!

Soft Gamma-ray repeater outburst, March, 2010, SGR 1833-0832, in direction of Sagittarius, center of Milky Way, is a magnetar with a "pulsar" spin period of 7.56 seconds.

One Minute Exam

Which statement is most relevant to making a radio pulsar?

- A solitary neutron star rotates with a tilted magnetic field.
 - A neutron star accretes matter from a binary companion.
 - A neutron star with a tilted magnetic field accretes matter from a binary companion.
 - A neutron star has a magnetic field 100 times stronger than the pulsar in the Crab nebula.

One Minute Exam

Which statement is most relevant to making an X-ray pulsar?

A solitary neutron star rotates with a tilted magnetic field.
A neutron star accretes matter from a binary companion.
A neutron star with a tilted magnetic field accretes matter from a binary companion.
A neutron star has a magnetic field 100 times stronger than the pulsar in the Crab nebula.

One Minute Exam

Which statement is most relevant to making a soft gamma-ray repeater outburst?

- A solitary neutron star rotates with a tilted magnetic field.
 - A neutron star accretes matter from a binary companion.
 - A neutron star with a tilted magnetic field accretes matter from a binary companion.
 - A neutron star has a magnetic field 100 times stronger than the pulsar in the Crab nebula.