# **Extraterrestrial Life**

#### **Extraterrestrial Life**

Extraterrestrial: outside the Earth, leads us to the Universe

Life: Terrestrial knowledge

We only KNOW about life on Earth (will use as "model")

Danger of "Earth Chauvinism"

#### **Objectives:**

Scientific Perspective

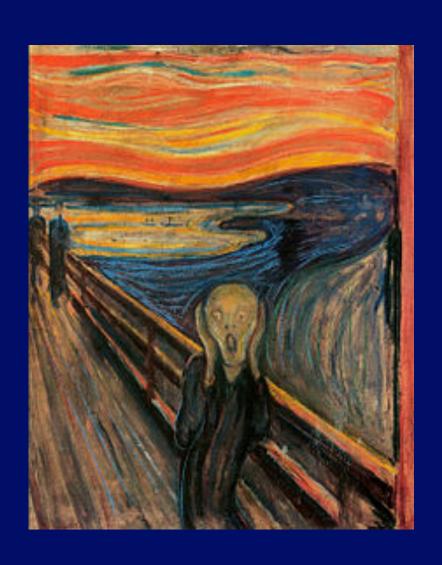
Understand connection between Universe and Life

Give you tools to make your **own** judgments

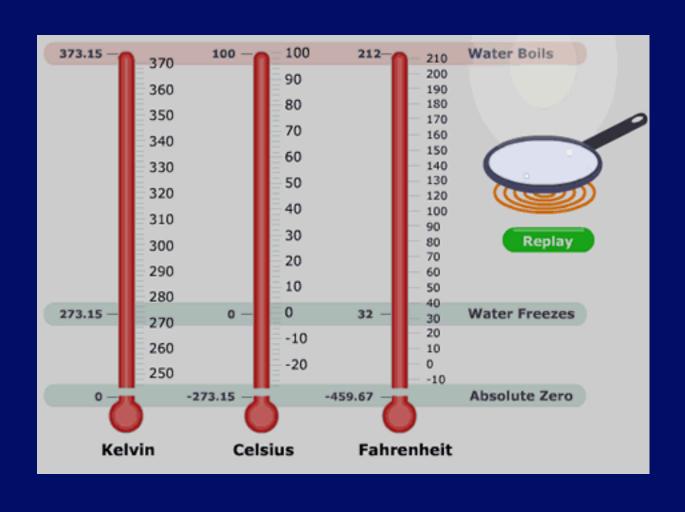
#### **Controversial Issues:**

**Evolution** 

Visits by Aliens (UFO's)


#### Themes:

**Cosmic Evolution** 


The Drake Equation

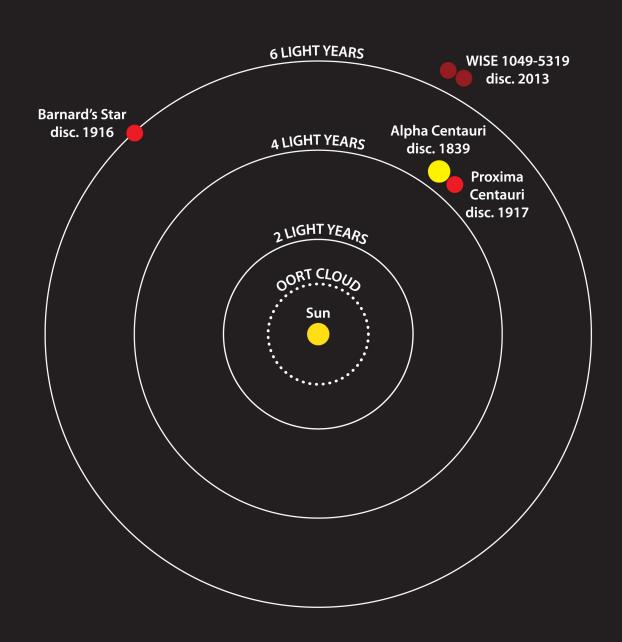
Contact

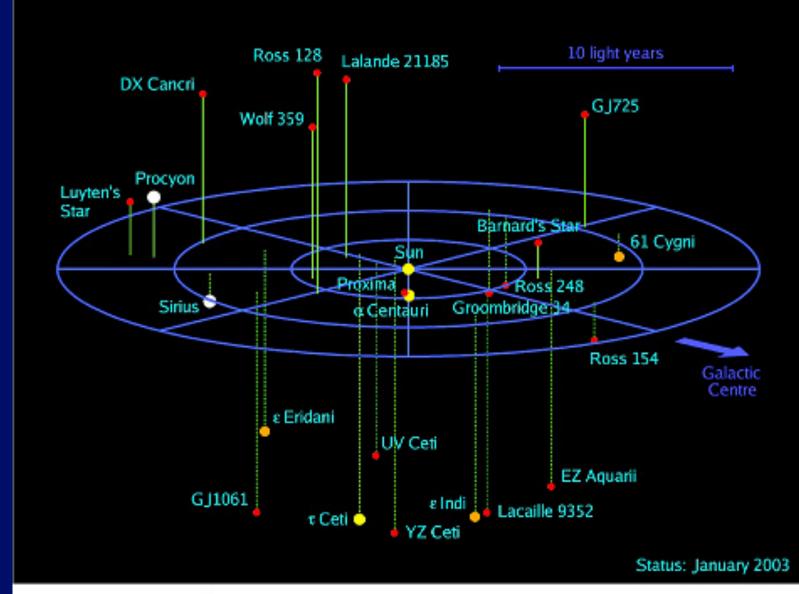
# Mathematics



# Temperature Scales




## The Cosmic Context


#### THE NEAREST STARS

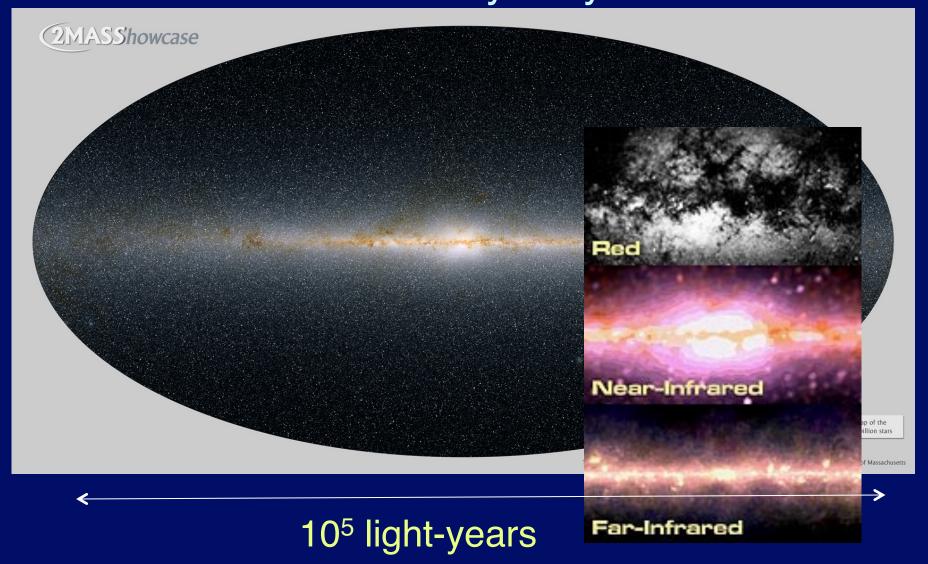
| Star             | Color  | Distance | Closest<br>Approach | Minimum<br>Distance |  |
|------------------|--------|----------|---------------------|---------------------|--|
| Sun              | Yellow | 0.0      |                     |                     |  |
| Alpha Centauri A | Yellow | 4.3      | 29,000 A.D.         | 3.2                 |  |
| Alpha Centauri B | Orange | 4.3      | 29,000 A.D.         | 3.2                 |  |
| Proxima Centauri | Red    | 4.2      | 28,000 A.D.         | 3.2                 |  |
| Barnard's Star   | Red    | 5.9      | 12,000 A.D.         | 3.8                 |  |
| Wolf 359         | Red    | 7.8      | 13,000 B.C.         | 7.3                 |  |
| Lalande 21185    | Red    | 8.2      | 22,000 A.D.         | 4.6                 |  |
| Sirius A         | White  | 8.6      | 64,000 A.D.         | 7.7                 |  |
| Sirius B         | White  | 8.6      | 64,000 A.D.         | 7.7                 |  |

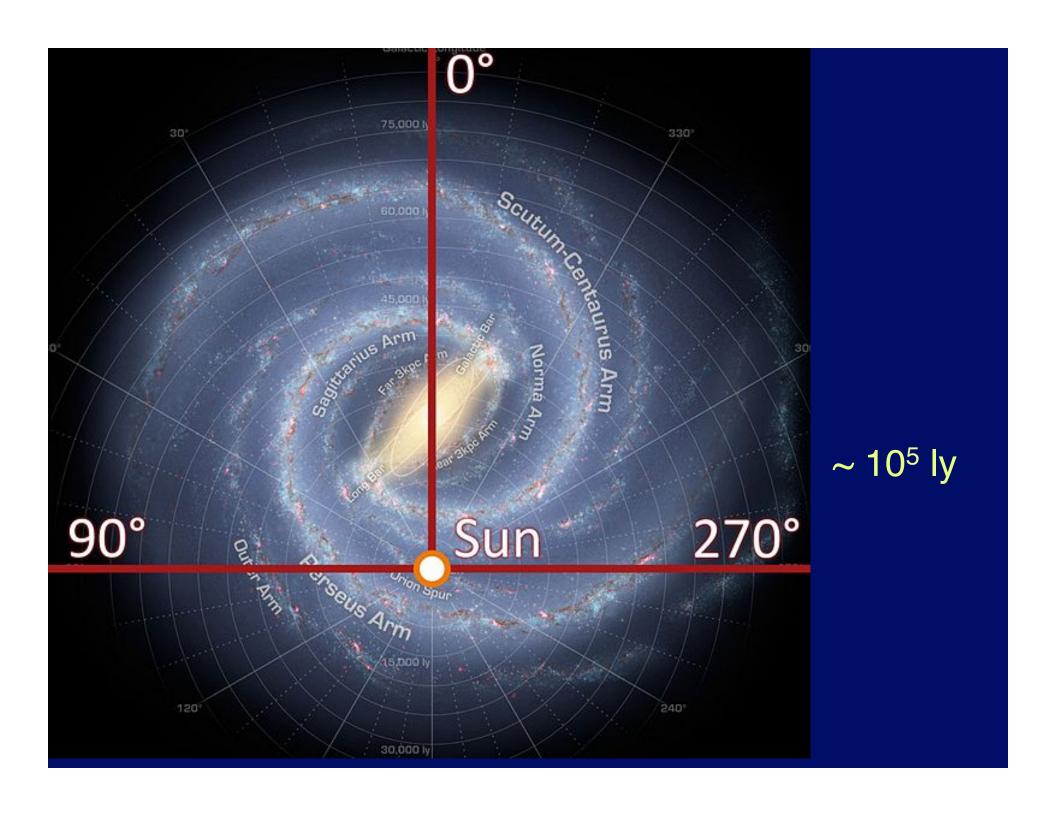
Note: Distances are in light-years with reference to the sun.

#### THE SUN'S CLOSEST NEIGHBORS

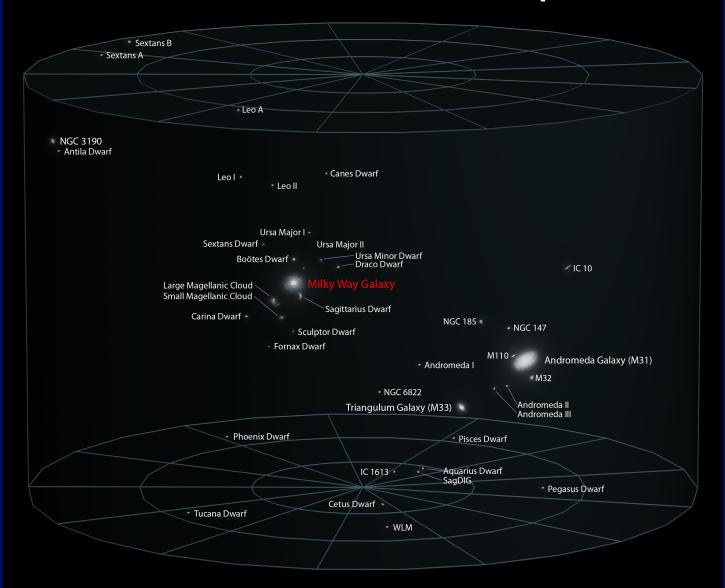





3D Map of Known Stellar Systems in the Solar Neighbourhood




# Larger Structures

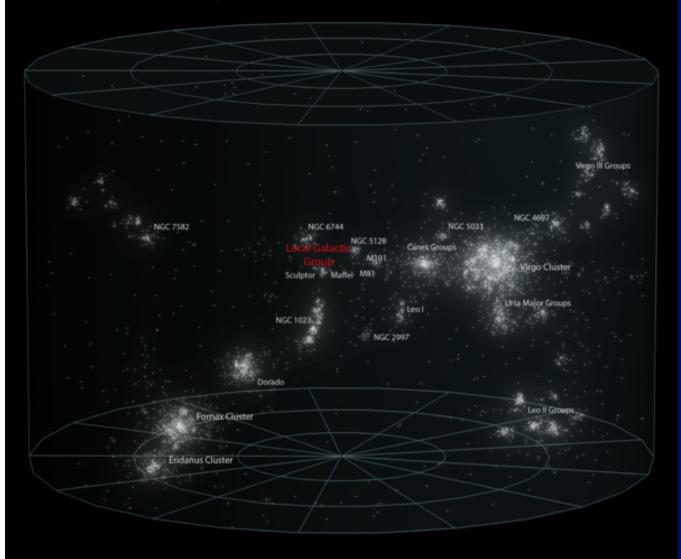

- Milky Way Galaxy 100,000 (10<sup>5</sup>) ly across
- Local Group about 3 million (3 x 10<sup>6</sup>) ly
- Virgo Cluster about 30 million (3 x 10<sup>7</sup>) ly
- Most distant galaxies we can see are about 40 billion (40 x 10<sup>9</sup>) ly away

# The Milky Way





# Local Galactic Group




 $\sim 3 \times 10^6 \, \text{lyr}$ 

# Central Part of Virgo Cluster



# Virgo Supercluster



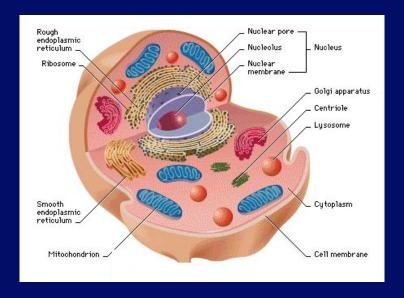
 $\sim 10^{8} \text{ ly}$ 

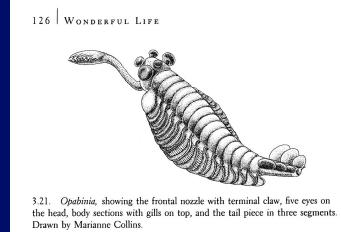
# The Hubble Deep Field



# Try this Link

http://www.atlasoftheuniverse.com/index.html


#### Questions


- How far from Earth are the astronauts in the Space Station?
- How far have humans traveled (in light-time units)?
- What fraction of the distance to the nearest star is that?
- Are we likely to travel to another star in your lifetimes?

# Capsule Cell Wall Cytoplasmic Membrane Ribosomes Pili Flagella



# Life





#### Five Attributes of Life

- 1. Composed of **Organic Molecules** (Carbon Based)
- 2. Engages in Metabolism
- 3. Reproduces
- 4. Mutates (Evolves)
- 5. Changes in Response to Environment (Sensitivity)

#### Questions

- Can you think of a counter-example to each of these?
- Something alive without these attributes?
- Something not alive with these attributes?

# Alternative Approach to Definition of Life

Based on Ecological aspect
Clare Folsom (Onsager-Morowitz)

"Life is that property of Matter that results in the Coupled Cycling of bioelements in Aqueous Solution, ultimately driven by radiant energy to attain Maximum Complexity"

Very general - but what does it mean?

Gaia - Geochemical & Biological Cycles Life on Earth as "Organism" (James Lovelock)

# Requirements for Life

To Make a: You Need:

Virus < 17 Elements

Bacteria ~ 17

Human (Mammal) ~ 27

Phosphorus (P) and Potassium (K) in shortest supply

Average Human Being contains 6 x 10<sup>27</sup> atoms

⇒ At least one atom of every stable element and some unstable (radioactive) elements (¹⁴C, ³H, ⁴⁰K)

# Leaving aside rare elements, all life has similar composition: (All % by number of atoms)

| <u>Symbol</u> | <u>Element</u> | <u>Bacteria</u> | <u>Human Beings</u> |
|---------------|----------------|-----------------|---------------------|
| Н             | Hydrogen       | 63%             | 61%                 |
| O             | Oxygen         | 29%             | 26%                 |
| С             | Carbon         | 6.4%            | 10.5%               |
| N             | Nitrogen       | 1.4%            | 2.4%                |
| Р             | Phosphorus     | 0.12%           | 0.13%               |
| Ca            | Calcium        |                 | 0.23%               |
| S             | Sulfur         | 0.06%           | 0.13%               |

HCON Essential, most common

P,S Also essential

Ca Bones

Also Fe (Iron) Hemoglobin

Mg (Magnesium) Chlorophyll

# Composition of the Earth:

| Element  | Crust | Ocean | Atmosphere      |
|----------|-------|-------|-----------------|
| Oxygen   | 47%   | ~ 33% | 21%             |
| Silicon  | 28%   |       |                 |
| Nitrogen |       |       | 78%             |
| Hydrogen |       | ~67%  | (0.011% Carbon) |

Question: Which is most similar to that of life?

# Composition of life **more** like Composition of Sun (Universe)

| Symbol | Element  | % in Sun |  |  |
|--------|----------|----------|--|--|
| Н      | Hydrogen | 93%      |  |  |
| He     | Helium   | 6.4%     |  |  |
| O      | Oxygen   | 0.06%    |  |  |
| С      | Carbon   | 0.03%    |  |  |
| N      | Nitrogen | 0.011%   |  |  |

Aside from He, HOCN

Where did these elements come from?

#### Appendix 5

#### Drake Equation:

$$N = R_* f_p n_e f_\ell f_i f_c L$$

N = number of communicable civilizations in our galaxy

 $R_*$  = rate at which stars form

f<sub>p</sub> = fraction of stars which have planetary systems

ne = number of planets, per planetary system, which are suitable for life

 $f_{\ell}$  = fraction of planets suitable for life on which life actually arises

f<sub>i</sub> = fraction of life-bearing planets where intelligence develops

f<sub>c</sub> = fraction of planets with intelligent life which develop a technological phase during which there is

capability for and interest in interstellar communication

L = average lifetime of communicable civilizations

r = average distance to nearest civilization

|           | R <sub>*</sub> | $f_p$ | $n_e$ | $f_{\ell}$ | $f_i$ | $f_c$ | L | N | r |
|-----------|----------------|-------|-------|------------|-------|-------|---|---|---|
| Estimate  |                |       |       |            |       |       |   |   |   |
| Birthrate |                |       |       |            | ·     | 2     |   |   |   |

if N > 8000 
$$r = \frac{10^4 \text{ l.y.}}{\text{N}^{1/3}}$$

if N < 8000 
$$r = \frac{5 \times 10^4 \text{ l.y}}{\text{N}^{1/2}}$$

## The Drake Equation

#### **Drake Equation:**

$$N = R * f_p n_e f_\ell f_i f_c L$$

N = number of communicable civilizations in our galaxyR<sub>\*</sub> = Rate at which stars form

f<sub>p</sub> = Fraction of stars which have planetary systems

n<sub>e</sub> = Number of planets, per planetary system, which are suitable for life

 $f_{\ell}$  = Fraction of planets suitable for life on which life actually arises

f<sub>i</sub> = Fraction of life bearing planets where intelligence develops

f<sub>c</sub> = Fraction of planets with intelligent life which develop a technological phase during which there is a capacity for and interest in interstellar communication

L = Average of lifetime of communicable civilizations

r = Average distance to nearest civilization