
AST 376 Cosmology — Problem Set 4

Prof. Volker Bromm — TA: Aaron Smith

I. INFLATING-AWAY THE MONOPOLE PROBLEM

We estimated that at the time of grand-unified (GUT) symmetry breaking, tGUT ∼ 10−36 s,
the number density of magnetic monopoles should have been of order nmono ∼ 1076 cm−3. We also
argued the monopole mass should be of order the GUT mass-energy scale, mmono ' 1015 GeV/c2.

Current observational limits on the density of magnetic monopoles indicate that their (present-day)
density parameter is: Ωmono < 10−6. If monopoles formed at tGUT, how many e-foldings (i.e., the
number N in eN ) of inflation would be required to drive the current monopole density below the
observational bound given above? Assume that inflation took place immediately after the creation
of the monopoles.

Answer: The present-day monopole energy density is ρmono,0 < Ωmonoρcrit,0 ≈ 10−6 ·10−29 g cm−3.
Now, if the monoplole mass corresponds to the GUT scale then the number density of monopoles
at the GUT redshift (see problem 2, Eq. 5) is less than
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The density at the end of inflation is really about a factor of ∼ 1003/2 = 1000 smaller than
this because inflation is non-instantaneous and the redshift has been overestimated by a factor
of z ∝ t1/2, i.e. n ∝ t−3/2. Therefore the number density at the end of inflation is closer to
nmono,end ≈ 4× 1053 cm−3.

In class we calculated an expected value for the monopole number density to be nmono,GUT (expected) ≈
1076 cm−3 at the start of inflation, i.e. t = 10−36 s. Because the monopole density scales as
nmono ∝ a−3 the number of e-foldings is the natural log of the cubic root of expected and observed
densities:
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This is not quite the expected value of N ∼ 60 because the monopole observations are still not
sensitive enough to constrain the monopole density within the theoretical range.

II. SIZE OF POST-INFLATION UNIVERSE

Consider our present-day observable universe (all the space inside the current horizon), and
figure out the size of this spherical region at the time just after inflation ended, tfinal ' 10−34 s.

Answer: When we extrapolate back in time, cosmic expansion was most recently dominated by a
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cosmological-constant dark energy, before that by matter, and before that by radiation. Therefore,
we use the following Hubble parameter:

H(t) ≡ ȧ

a
= H0

√
Ωra−4 + Ωma−3 + ΩΛ , (3)

with H0 = 70 km/s/Mpc, Ωr = 9×10−5, Ωm = 0.3, and ΩΛ = 0.7. Therefore, the comoving radius
of the observable universe is
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≈ 13.89 Gpc . (4)

From the notes, the redshift of inflation is roughly

zGUT ≈
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≈ 1015 GeV

(1.38× 10−16 ergs/K)(2.7 K)
≈ 4.3× 1027 . (5)

so the rough size of the observable Universe around inflation is
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≈ 3.23× 10−27 Gpc ≈ 10 cm . (6)

The size of the observable universe after inflation is really about a factor of ∼ 10 larger than
this because inflation is non-instantaneous and the redshift has been overestimated by a factor of
z ∝ t1/2.
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