AST 376 Cosmology - Problem Set 3

Prof. Volker Bromm - TA: Aaron Smith

I. DARK ENERGY EQUATION OF STATE

Suppose dark energy has an equation of state $P_{\mathrm{vac}}=w \rho_{\mathrm{vac}} c^{2}$, where here w is supposed to be time dependent, i.e. $w=w(z)$. Show that the Hubble expansion rate, well after the radiationdominated epoch, can be written as:

$$
\frac{H^{2}(z)}{H_{0}^{2}}=\Omega_{m}(1+z)^{3}+\Omega_{\mathrm{DE}} \exp \left[3 \int_{0}^{z}[1+w(x)] d \ln (1+x)\right]
$$

where Ω_{DE} is the fraction of critical density contributed by dark energy (DE) today. For simplicity, let's pick the following cosmological parameters: $\Omega_{m}=0.3, \Omega_{\mathrm{DE}}=0.7, H_{0}=70 \mathrm{~km} \mathrm{~s}^{1} \mathrm{Mpc}^{1}$.

Answer: In order to derive the result we first consider conservation of energy in expanding space:

$$
\begin{equation*}
d E=-P d V \quad \Rightarrow \quad d\left(a^{3} \rho_{i} c^{2}\right)=-P_{i} d a^{3} . \tag{1}
\end{equation*}
$$

For normal matter the e.o.s. is $P_{m}=0$ so the solution is relatively simple:

$$
\begin{equation*}
d\left(a^{3} \rho_{m} c^{2}\right)=-P_{m} d a^{3}=0 \quad \Rightarrow \quad \rho_{m}=\rho_{m, 0} a^{-3} \tag{2}
\end{equation*}
$$

For dark energy with the time-dependent e.o.s. $P_{\mathrm{vac}}=w(z) \rho_{\mathrm{vac}} c^{2}$ the ODE becomes:

$$
\begin{align*}
& d\left(a^{3} \rho_{\mathrm{vac}} c^{2}\right)=-P_{\mathrm{vac}} d a^{3}=-w(a) \rho_{\mathrm{vac}} c^{2} d a^{3} \\
\Rightarrow \quad & a^{-3} \frac{d}{d a}\left(a^{3} \rho_{\mathrm{vac}}\right)=-w(a) \rho_{\mathrm{vac}} a^{-3} \frac{d}{d a}\left(a^{3}\right) \\
\Rightarrow \quad & \frac{d \rho_{\mathrm{vac}}}{d a}+3 \frac{\rho_{\mathrm{vac}}}{a}=-\frac{3 w(a) \rho_{\mathrm{vac}}}{a} \\
\Rightarrow \quad & \frac{d \rho_{\mathrm{vac}}}{\rho_{\mathrm{vac}}}=-\frac{3[1+w(a)] d a}{a} \\
\Rightarrow \quad & \rho_{\mathrm{vac}}=\rho_{\mathrm{vac}, 0} \exp \left[-3 \int_{1}^{a}\left[1+w\left(a^{\prime}\right)\right] d \ln a^{\prime}\right] . \tag{3}
\end{align*}
$$

We have used the chain rule to relate $d \ln a=d a / a$.
Now the Friedmann equation is obtained by considering cosmic dynamics from Einstein's equation:

$$
\begin{equation*}
\frac{\ddot{a}}{a}=-\frac{4 \pi G}{3} \rho_{\mathrm{eff}}=-\frac{4 \pi G}{3}\left(\rho_{m}(a)+\rho_{\mathrm{vac}}(a)+\frac{3 P_{\mathrm{vac}}(a)}{c^{2}}\right)=-\frac{4 \pi G}{3}\left(\rho_{m}(a)+\rho_{\mathrm{vac}}(a)[1+3 w(a)]\right) . \tag{4}
\end{equation*}
$$

We may simplify this equation by recalling

$$
\Omega_{m} \equiv \frac{\rho_{m, 0}}{\rho_{\text {crit }, 0}} \quad \text { and } \quad \Omega_{\mathrm{DE}} \equiv \frac{\rho_{\text {vac }, 0}}{\rho_{\text {crit }, 0}}, \quad \text { where } \quad \rho_{\text {crit }, 0} \equiv \frac{3 H_{0}^{2}}{8 \pi G}
$$

Thus, Eq. 4 becomes

$$
\begin{equation*}
\frac{\ddot{a}}{a}=-\frac{H_{0}^{2}}{2}\left(\Omega_{m} a^{-3}+\Omega_{\mathrm{DE}}[1+3 w(a)] \exp \left[-3 \int_{1}^{a}\left[1+w\left(a^{\prime}\right)\right] d \ln a^{\prime}\right]\right) . \tag{5}
\end{equation*}
$$

Multiplying Eq. 5 by $2 a \dot{a} H_{0}^{-2}$ gives

$$
\begin{equation*}
2 \dot{a} \ddot{a} H_{0}^{-2}=-a \dot{a}\left(\Omega_{m} a^{-3}+\Omega_{\mathrm{DE}}[1+3 w(a)] \exp \left[-3 \int_{1}^{a}\left[1+w\left(a^{\prime}\right)\right] d \ln a^{\prime}\right]\right) \tag{6}
\end{equation*}
$$

The term on the LHS of Eq. 6 can be integrated directly as follows:

$$
\begin{equation*}
\frac{1}{H_{0}^{2}} \int_{t_{0}}^{t} 2 \dot{a}\left(t^{\prime}\right) \ddot{a}\left(t^{\prime}\right) d t^{\prime}=\frac{1}{H_{0}^{2}} \int_{t_{0}}^{t} \frac{d}{d t^{\prime}}\left[\dot{a}^{2}\left(t^{\prime}\right)\right] d t^{\prime}=\left[\frac{\dot{a}^{2}\left(t^{\prime}\right)}{H_{0}^{2}}\right]_{t_{0}}^{t}=\frac{a^{2} H^{2}(t)}{H_{0}^{2}}-1 \tag{7}
\end{equation*}
$$

Likewise for the first term on the RHS of Eq. 6:

$$
\begin{equation*}
-\Omega_{m} \int_{t_{0}}^{t} \frac{\dot{a}\left(t^{\prime}\right) d t^{\prime}}{a^{2}\left(t^{\prime}\right)}=-\Omega_{m} \int_{1}^{a} \frac{d a^{\prime}}{a^{\prime 2}}=-\Omega_{m}\left[-a^{\prime-1}\right]_{1}^{a}=\Omega_{m} a^{-1}-\Omega_{m} \tag{8}
\end{equation*}
$$

The last term on the RHS can be done using integration by parts. For simplicity we define $W(a) \equiv$ $\exp \left[-3 \int_{1}^{a}\left[1+w\left(a^{\prime}\right)\right] d \ln a^{\prime}\right]$ so that $W^{\prime}(a)=-3 a^{-1}[1+w(a)] W(a)$. From this the integration is $\int u d v=u v-\int v d u$ where $u=a^{\prime 2}$ and $v=W\left(a^{\prime}\right)$. The term without Ω_{DE} becomes

$$
\begin{align*}
-\int_{1}^{a} a^{\prime}\left[1+3 w\left(a^{\prime}\right)\right] W\left(a^{\prime}\right) d a^{\prime} & =\int_{1}^{a} 2 a^{\prime} W\left(a^{\prime}\right) d a^{\prime}+\int_{1}^{a} a^{\prime 2} \frac{(-3)\left[1+w\left(a^{\prime}\right)\right] W\left(a^{\prime}\right)}{a^{\prime}} d a^{\prime} \\
& =\int_{1}^{a} 2 a^{\prime} W\left(a^{\prime}\right) d a^{\prime}+\int_{1}^{a} a^{\prime 2} \frac{d W\left(a^{\prime}\right)}{d a^{\prime}} d a^{\prime} \\
& =\int_{1}^{a} 2 a^{\prime} W\left(a^{\prime}\right) d a^{\prime}+\left[a^{\prime 2} W\left(a^{\prime}\right)\right]_{1}^{a}-\int_{1}^{a}\left(2 a^{\prime}\right) W\left(a^{\prime}\right) d a^{\prime} \\
& =\left[a^{\prime 2} W\left(a^{\prime}\right)\right]_{1}^{a}=a^{2} W(a)-W(1) \\
& =a^{2} \exp \left[-3 \int_{1}^{a}\left[1+w\left(a^{\prime}\right)\right] d \ln a^{\prime}\right]-1 \tag{9}
\end{align*}
$$

Finally, the Friedmann equation with a time-dependent e.o.s. is found by collecting these three terms:

$$
\begin{equation*}
\frac{a^{2} H^{2}(t)}{H_{0}^{2}}-1=\Omega_{m} a^{-1}-\Omega_{m}+a^{2} \Omega_{\mathrm{DE}} \exp \left[-3 \int_{1}^{a}\left[1+w\left(a^{\prime}\right)\right] d \ln a^{\prime}\right]-\Omega_{\mathrm{DE}} \tag{10}
\end{equation*}
$$

which is simplified by dividing by a^{2} and rearranging terms:

$$
\begin{equation*}
\frac{H^{2}(t)}{H_{0}^{2}}=\frac{\Omega_{m}}{a^{3}}+\Omega_{\mathrm{DE}} \exp \left[-3 \int_{1}^{a}\left[1+w\left(a^{\prime}\right)\right] d \ln a^{\prime}\right]+\frac{\left(1-\Omega_{m}-\Omega_{\mathrm{DE}}\right)}{a^{2}} \tag{11}
\end{equation*}
$$

The last term represents geometric curvature, but in a flat universe $\Omega_{m}+\Omega_{\mathrm{DE}}=1$ so we have:

$$
\begin{equation*}
\frac{H^{2}(z)}{H_{0}^{2}}=\Omega_{m}(1+z)^{3}+\Omega_{\mathrm{DE}} \exp \left[3 \int_{0}^{z}[1+w(x)] d \ln (1+x)\right] \tag{12}
\end{equation*}
$$

Many experiments in the next decade, including UT's Hobby-Eberly Telescope Dark Energy Experiment (HETDEX), aim at constraining $w(z)$ to infer clues on the nature of dark energy. To understand how sensitive these measurements have to be, plot the:
(a) age of the universe:
(b) luminosity distance:
as a function of redshift for 4 different models: $w=1$ (Einstein's cosmological constant), $w=-1 / 3$, $w=-0.5+0.1 z, w=-0.5-0.05 z$, for $0<z<5$.

Answer: The age of the universe is given by solving the Friedmann equation, i.e. Eq. 12,

$$
\begin{equation*}
t(z)=\int_{0}^{t} d t^{\prime}=\int_{0}^{a} \frac{d a^{\prime}}{a^{\prime} H\left(a^{\prime}\right)}=\int_{z}^{\infty} \frac{d z^{\prime}}{\left(1+z^{\prime}\right) H\left(z^{\prime}\right)} \quad \text { ("Age of the Universe"). } \tag{13}
\end{equation*}
$$

For the four models we have $W(z) \equiv \exp \left[3 \int_{0}^{z}[1+w(x)] d \ln (1+x)\right]$:

$$
\begin{array}{ll}
w_{1}=-1 & W_{1}(z)=1 \\
w_{2}=-\frac{1}{3} & W_{2}(z)=(1+z)^{2} \\
w_{3}=-\frac{1}{2}+\frac{z}{10} & W_{3}(z)=(1+z)^{6 / 5} \exp \left(\frac{3 z}{10}\right) \\
w_{4}=-\frac{1}{2}-\frac{z}{20} & W_{4}(z)=(1+z)^{33 / 20} \exp \left(-\frac{3 z}{20}\right) \tag{14}
\end{array}
$$

Using $H_{i}(z)=H_{0}\left[\Omega_{m}(1+z)^{3}+\Omega_{\mathrm{DE}} W_{i}(z)\right]^{1 / 2}$ results in the following plot:

Likewise, the luminosity distance is calculated (and plotted) as follows:

$$
\begin{equation*}
D_{\mathrm{L}}(z)=(1+z) r(z)=(1+z) \int_{0}^{z} \frac{c d z^{\prime}}{H\left(z^{\prime}\right)} \quad \text { ("Luminosity distance") } \tag{15}
\end{equation*}
$$

II. FROM COSMIC DECELERATION TO ACCELERATION

Early on in cosmic history, dark energy was not important, and normal matter caused cosmic expansion to decelerate $(\ddot{a}<0)$. At some time, however, below a critical redshift, $z_{\text {crit }}$, dark energy takes over, causing an accelerated expansion ($\ddot{a}>0$).
(a) Using current cosmological parameters, calculate the value of $z_{\text {crit }}$ (where $\ddot{a}=0$).

Answer: Earlier in Eq. 5 we came across the following version of $\ddot{a} / a=-\frac{4 \pi G}{3} \rho_{\text {eff }}$:

$$
\begin{equation*}
\ddot{a} \propto \Omega_{m}(1+z)^{3}+\Omega_{\mathrm{DE}}[1+3 w(z)] \exp \left[3 \int_{0}^{z}[1+w(x)] d \ln (1+x)\right]=0 . \tag{16}
\end{equation*}
$$

This can be done analytically for the cosmological constant model where $w(z)=-1$:

$$
0=\Omega_{m}\left(1+z_{\text {crit }}\right)^{3}-2 \Omega_{\mathrm{DE}} \quad \Rightarrow \quad z_{\mathrm{crit}}=\left(\frac{2 \Omega_{\mathrm{DE}}}{\Omega_{m}}\right)^{1 / 3}-1 \approx 0.671
$$

For the $w_{2}(z)=-1 / 3$ model there is no $z_{\text {crit }}$ that works, but the w_{3} and w_{4} models have $z_{\text {crit }} \approx 0.075$ and $z_{\text {crit }} \approx 0.138$, respectively.
(b) How long ago was that (in units of Gyr)? I.e., calculate the lookback time to redshift $z_{\text {crit }}$.

Answer: The lookback time is the difference in the ages of the universe at a redshift of z from the current age. In other words change the limits of integration to be from z to 0 :

$$
\begin{align*}
t_{\mathrm{L}}(z)=\int_{t}^{t_{0}} d t^{\prime} & =\int_{a}^{1} \frac{d a^{\prime}}{a^{\prime} H\left(a^{\prime}\right)}=\int_{0}^{z} \frac{d z^{\prime}}{\left(1+z^{\prime}\right) H\left(z^{\prime}\right)} \quad \text { ("Lookback time"). } \tag{17}\\
t_{\mathrm{L}}\left(z_{\text {crit }}\right) & =\int_{0}^{z} \frac{d z^{\prime}}{\left(1+z^{\prime}\right) H_{0} \sqrt{\Omega_{m}(1+z)^{3}+\Omega_{\mathrm{DE}}}}=6.142 \mathrm{Gyr}
\end{align*}
$$

There is no lookback time for the $w_{2}(z)=-1 / 3$ model but the corresponding results for the w_{3} and w_{4} models are 0.9784 Gyr and 1.692 Gyr , respectively.

