AST 376 Cosmology - Problem Set 1

Prof. Volker Bromm - TA: Aaron Smith

I. NEWTONIAN COSMOLOGY

In class, we solved the Friedmann equation for the critical case, where the constant of integration was set to $k=0$; this resulted in the Einstein-de Sitter model, where $a \propto t^{2 / 3}$. Now, let us consider the closed case $(k=+1)$, where the universe starts with a Big Bang, reaches a maximum expansion, turns around, and eventually ends in a Big Crunch.

For the closed model, it is convenient to write the Friedmann equation as follows:

$$
\begin{equation*}
\dot{a}^{2}=\frac{8 \pi G \rho_{0}}{3}\left(a^{-1}-1\right), \tag{1}
\end{equation*}
$$

where ρ_{0} is the present-day mass density.

(a) Parametric Expressions

The Friedmann equation can be solved with the following parametric expressions:

$$
a=\sin ^{2} \alpha \quad \text { and } \quad t=A(\alpha-\sin \alpha \cos \alpha),
$$

where α is a "development angle", such that $\alpha=0$ corresponds to the Big Bang, $\alpha=\frac{\pi}{2}$ corresponds to the point of maximum expansion ("turn-around"), and $\alpha=\pi$ to the Big Crunch.

To find the constant A we first find \dot{a} from the parametric expressions. Consider that

$$
\frac{d a}{d \alpha}=\frac{d}{d \alpha}\left(\sin ^{2} \alpha\right)=2 \sin \alpha \cos \alpha
$$

and

$$
\frac{d t}{d \alpha}=A \frac{d}{d \alpha}(\alpha-\sin \alpha \cos \alpha)=A\left(1-\cos ^{2} \alpha+\sin ^{2} \alpha\right)=2 A \sin ^{2} \alpha,
$$

so the derivative becomes

$$
\dot{a}=\frac{d a}{d t}=\frac{d a / d \alpha}{d t / d \alpha}=\frac{2 \sin \alpha \cos \alpha}{2 A \sin ^{2} \alpha}=\frac{1}{A \tan \alpha} .
$$

Thus, according to Eq. 1 we have

$$
\begin{aligned}
0 & =\left(\frac{1}{A \tan \alpha}\right)^{2}-\frac{8 \pi G \rho_{0}}{3}\left(\frac{1}{\sin ^{2} \alpha}-1\right) \\
& =\frac{\cot ^{2} \alpha}{A^{2}}-\frac{8 \pi G \rho_{0}}{3}\left(\csc ^{2} \alpha-1\right) \\
& =\cot ^{2} \alpha\left(\frac{1}{A^{2}}-\frac{8 \pi G \rho_{0}}{3}\right) \\
& \Rightarrow A=\sqrt{\frac{3}{8 \pi G \rho_{0}}} .
\end{aligned}
$$

(b) Plot

Plot this solution, showing the scale factor on the y-axis, and time on the x-axis. Assuming $\rho_{0}=5 \times 10^{-29} \mathrm{~g} \mathrm{~cm}^{-3}$, show time in units of Gyr. (Recall that the scale factor is dimensionless.)

(c) Age of the Universe

What is the total duration of such a universe? I.e., what is the time elapsing between Big Bang and Big Crunch (in units of Gyr)?

We simply need to calculate the time when $\alpha=\pi$:

$$
\begin{equation*}
t_{\text {Big Crunch }}=\left.\sqrt{\frac{3}{8 \pi G \rho_{0}}}(\alpha-\sin \alpha \cos \alpha)\right|_{\alpha=\pi}=\sqrt{\frac{3 \pi}{8 G \rho_{0}}}=18.84 \mathrm{Gyr} \tag{2}
\end{equation*}
$$

(d) Einstein-de Sitter

Show that at early times, i.e., for small development angles α, the closed solution discussed here approximately approaches the Einstein-de Sitter scaling $\left(a \propto t^{2 / 3}\right)$. To do this, Taylor expand (in $\alpha)$ the parametric expressions in part (a) above.

$$
t \propto \alpha-\sin \alpha \cos \alpha \approx \alpha-\alpha\left(1-\frac{\alpha^{2}}{2}\right) \propto \alpha^{3} \quad \text { and } \quad a=\sin ^{2} \alpha \approx \alpha^{2}
$$

combine to give

$$
a \propto t^{2 / 3}
$$

II. FLAT SPACETIME METRIC

The spatial (x, y, z) part of the Euclidean (flat) metric can be written, using spherical coordinates (r, θ, φ) as follows:

$$
\begin{equation*}
d \ell^{2}=d r^{2}+r^{2} d \theta^{2}+r^{2} \sin ^{2} \theta d \varphi^{2} \tag{3}
\end{equation*}
$$

Explicitly show that this can be transformed into the standard Cartesian form, thus proving that the metric in Eq. 3 is flat.

To proceed we recall the definitions of (r, θ, φ) in terms of (x, y, z) :

$$
\begin{aligned}
r & =\left(x^{2}+y^{2}+z^{2}\right)^{1 / 2} \\
\theta & =\cos ^{-1} \frac{z}{\left(x^{2}+y^{2}+z^{2}\right)^{1 / 2}} \\
\varphi & =\tan ^{-1} \frac{y}{x}
\end{aligned}
$$

Therefore, using the chain rule (e.g. $d r=\frac{d r}{d x} d x+\frac{d r}{d y} d y+\frac{d r}{d z} d z$) the differentials are:

$$
\begin{aligned}
& d r=\frac{x d x+y d y+z d z}{r} \\
& d \theta=\frac{z(x d x+y d y)-\left(x^{2}+y^{2}\right) d z}{r^{2}\left(x^{2}+y^{2}\right)^{1 / 2}} \\
& d \varphi=\frac{-y d x+x d y}{x^{2}+y^{2}} .
\end{aligned}
$$

The form of the metric in Eq. 3 suggests what quantities we should calculate:

$$
\begin{aligned}
r^{2} d r^{2} & =(x d x+y d y+z d z)^{2} \\
& =x^{2} d x^{2}+y^{2} d y^{2}+z^{2} d z^{2}+2 x y d x d y+2 x z d x d z+2 y z d y d z \\
r^{4} d \theta^{2} & =\frac{\left[z(x d x+y d y)-\left(x^{2}+y^{2}\right) d z\right]^{2}}{x^{2}+y^{2}} \\
& =\left(x^{2}+y^{2}\right) d z^{2}-2 x z d x d z-2 y z d y d z+\frac{z^{2}\left(x^{2} d x^{2}+2 x y d x d y+y^{2} d y^{2}\right)}{x^{2}+y^{2}} \\
r^{4} \sin ^{2} \theta d \varphi & =\frac{r^{2}(y d x-x d y)^{2}}{x^{2}+y^{2}} \\
& =\left(1+\frac{z^{2}}{x^{2}+y^{2}}\right)\left(y^{2} d x^{2}-2 x y d x d y+x^{2} d y^{2}\right) \\
& =y^{2} d x^{2}-2 x y d x d y+x^{2} d y^{2}+\frac{z^{2}\left(y^{2} d x^{2}-2 x y d x d y+x^{2} d y^{2}\right)}{x^{2}+y^{2}} .
\end{aligned}
$$

Adding each of these together and collecting (by inspection) the $d x^{2}, d x d y$, etc. terms we have:

$$
\begin{aligned}
r^{2} d \ell^{2} & =r^{2} d r^{2}+r^{4} d \theta^{2}+r^{4} \sin ^{2} \theta d \varphi \\
& =\left(x^{2}+y^{2}\right)\left(d x^{2}+d y^{2}+d z^{2}\right)+z^{2} d z^{2}+\frac{z^{2}\left(x^{2}+y^{2}\right)\left(d x^{2}+d y^{2}\right)}{x^{2}+y^{2}} \\
& =r^{2}\left(d x^{2}+d y^{2}+d z^{2}\right) .
\end{aligned}
$$

This proves the metric corresponds to flat space.

