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NEWTONIAN COSMOLOGY

As discusses previously a Newtonian formulation of cosmology is not entirely consistent. How-
ever, if we work in the regime where RS � R we can illustrate some correct aspects of the full
theory (meaning GR). One of our main goals will be to find the evolution of the scale factor a(t).

The cosmic equation of motion (e.o.m)

First of all we simplify things considerably by assuming RS/R � 1 so Newtonian physics is
valid. We then consider a sphere of radius R and uniform density ρ. The mass within a shell is
∆M = 4πr2ρ∆r and the total mass is M = 4

3πR
3ρ. The e.o.m. is found by combining Newton’s

2nd Law, F = ma, with the universal law of gravitation, F ∝ 1/r2,

R̈ = −GM
R2

= −4

3
πGρR . (1)

However, this is in terms of the physical radius. We can get a relation for the scale factor by
substituting R = ax and R̈ = äx giving

ä = −4πG

3
ρa . (2)

Evolution of mass density

Consider a cubical region of the expanding space. Conservation of mass dictates that the
mass ∆M within a given comoving volume is constant in time. Comparing the mass at two
different times (t and t0),

∆M(t) = a3x3ρ(t) and ∆M(t0) = a3
0x

3ρ(t0) = x3ρ0 , (3)

provides the evolution of the cosmic matter density

ρ(t) = ρ0a
−3 = ρ0(1 + z)3 . (4)

Note: This is only valid for normal (ordinary) nonrelativistic matter. We do not expect this to
hold for radiation, dark energy, etc. Furthermore, the density is infinite at the Big Bang, i.e. in
the limit as z →∞. From Eqs. 2 and 4 the full equation of motion is

ä = −4πG

3
ρ0a

−2 (Matter equation of motion) . (5)
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Toward the simplified Friedmann equation

At this point we may use any method we like to solve the differential equation in Eq. 5. We
proceed with an old trick to eliminate one of the time derivatives as follows:

(i) Multiply both sides by 2ȧ to get

2ȧä = −8πG

3
ρ0ȧa

−2 . (6)

(ii) Use the fact that d
dt (ȧ)2 = 2ȧä and d

dt

(
a−1

)
= −a−2ȧ to rearrange Eq. 5 into

d (ȧ)2

dt
=

8πG

3
ρ0
d
(
a−1

)
dt

. (7)

(iii) Integrate both sides, allow for a constant of integration k, and divide by a2 to arrive at(
ȧ

a

)2

=
8πG

3

ρ0

a3
− k

a2
(“simplified Friedmann Equation”) . (8)

Note: The constant of integration k represents the geometric curvature of the universe. The
state of cosmology for most of the 20th century was one where the value of k was quite uncertain.
Fortunately, the theorist’s perfect model of a flat (k = 0) universe turns out to correspond to ours.

Critical density

Assume the special case where the kinetic and potential energy budgets are exactly balanced:

Ekin + Epot = 0 . (9)

This corresponds to a flat (k = 0) universe! If Ekin < Epot we end up with a “Big Crunch”
and Ekin ≥ Epot results in a “Big Freeze.” Consider again an expanding shell with radius R0 and
velocity v0 = H0R0, as determined by Hubble’s law. Eq. 9 describes a case of critical density ρcrit,0:

1

2
∆Mv2

0 =
GM

R0
∆M ⇒ 1

2
(H0R0)2 =

G

R0

(
4π

3
R3

0ρcrit,0

)
. (10)

Thus, the Hubble constant and critical density can be defined in terms of each other:

H2
0 ≡

8πG

3
ρcrit,0 ⇒ ρcrit,0 ≡

3H2
0

8πG
∼ 10−29 g cm−3 . (11)

Note: We now have a more subtle picture of the universe with (cold) baryonic matter, dark matter,
radiation, neutrinos, dark energy, and possibly some unknown species. We label each density with
respective subscripts. For now we only need to remember ρm + ρΛ ∼ ρcrit,0 and ρm ∼ 0.3ρcrit,0 .

To be correct we would also need to write subscripts to denote present-day values, however, with
so many zeros it is almost universally accepted to drop them all, except for the one on ρcrit,0.

With this in mind we define the present-day fractional contribution to the density, or the omega
parameter Ω which we could again think of as having a zero subscript,

Ω ≡ ρ0

ρcrit,0
(“omega parameter”) ⇒

(
ȧ

a

)2

= H2
0 Ωa−3 − k

a2
(Friedmann Eq.) . (12)
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The Einstein-de Sitter model of the Universe (Ω = 1)

Q: how do we fix the constant of integration?
A: We need the scale factor to converge to a finite value, i.e. as a→∞ the value of ȧ→ 0. This
is only possible if k = 0 which corresponds to a flat universe. This also means Ω = 1 as can be
discovered by plugging in the present-day values of a and ȧ into Eq. 15. Therefore, the e.o.m. is(

ȧ

a

)2

= H2
0a

−3 , (13)

which is solved by plugging in a power-law ansatz:

a(t) = Atα ⇒ α2t−2 =
H2

0

A3
t−3α ⇒ α =

2

3
and A =

[
3

2
H0

]2/3

. (14)

This leads to the solution for an Einstein-de Sitter (EdS) universe:

a(t) =

[
3

2
H0

]2/3

t2/3 or simply a(t) ∝ t2/3 (“Einstein-de Sitter universe”) . (15)

In this model the exact age of the universe is

tH,EdS =
2

3H0
∼ 9 Gyr , (16)

which is younger than the age of the oldest globular clusters. Hence, we cannot live in an Einstein-
de Sitter universe without suffering from a “cosmic age crisis.” Cosmic acceleration from dark
energy, of course, fixes this problem.
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