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INTRODUCTION

The Cosmological Principle

One of the basic realizations of the universe is that it is the same everywhere. This is called the
Cosmological Principle which asserts that we live in a universe that is both homogeneous and
isotropic, meaning that it is both uniform along paths and is also the same in every direction.
Q: How do we know the Cosmological Principle represents reality?
A: By combining the following arguments:

(i) We observe isotropy around us! When we look out at the night sky each direction is almost
indistinguishable from any other. Historically, the cosmic microwave background (CMB) pro-
vides the clearest picture of just how isotropic the universe began. With fluctuations on the
order of only a part in a hundred thousand the CMB radio waves were serendipitously discov-
ered by Penzias and Wilson in 1965 as noise in their equipment. Still, many groundbreaking
phenomena (and even Nobel Prizes) have been discovered as a result of CMB observations.
The main space-based probes are COBE, WMAP, and PLANCK. Other examples of obser-
vational evidence for isotropy include galaxy surveys and gamma-ray bursts (GRBs).
Note: The local distribution of stars and galaxies is not isotropic! It is only when we look
at large scales that this becomes as elegant as the Cosmological Principle suggests.

(ii) Assume isotropy everywhere! This is an application of the Copernican principle, i.e. we do
not occupy a special place in the universe.

(iii) If we buy the idea of isotropy everywhere then logically we must have homogeneity, or
uniformity. In other words, isotropy is given to us by observations but we need to appeal to
philosophical arguments to get homogeneity.

How can we prove this? Pick two arbitrary points in space. Draw circles around each point
that intersect one another. Because of isotropy the distribution of matter is uniform along
circle. Therefore, it is also uniform in the annulus formed by the intersection. An infinite
number of these points may be chosen so that the entire volume of the universe is uniform.
Thus, isotropy implies homogeneity. (However, homogeneity does not require isotropy.)

The need for General Relativity in Cosmology

On large scales, the universe is described by an Einsteinian theory of gravity. By this we mean
it is governed by the principles of relativity and (if we are required to be specific about it) we will
employ the General Theory of Relativity to build our models.
Q: How do we know we have to use general relativity (GR) in cosmology?
A: There are of course flaws with the Newtonian picture of gravity because of action at a distance
and inconsistencies with observations, but this is not what we are getting at here. Perhaps what
we mean is ‘under what conditions are we required to consider GR in cosmology?’ To motivate
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this question we recall the condition for deciding to use special relativity (SR):

β ≡ v

c
� 1 (Condition to choose Newtonian physics over SR) . (1)

For GR we must compare the size of the object R with its Schwarzschild radius RS. This is a very
important concept so we recall a heuristic derivation of RS by considering the escape velocity vesc in
Newtonian physics. Energy conservation dictates that potential and kinetic energies be balanced:

Epot + Ekin = −GM
R

m+
1

2
mv2esc = 0 . (2)

Solving for vesc in Eq. 2 gives

v2esc =
2GM

R
. (3)

In the limit that the escape velocity approaches the speed of light a relativistic black hole is formed
from which nothing can escape. Therefore, in the Newtonian view the Schwarzschild radius is
defined as the point where vesc → c. Formally,

RS ≡
2GM

c2
(Schwarzschild Radius) . (4)

If R� RS gravity is weak and GR is not needed. We can show the relative importance of relativity
by comparing the radius of the sun to its Schwarzschild radius and likewise for neutron stars:

∗ Sun :
RS,�
R�

∼ 3 km

106 km
∼ 10−6 Small but measurable effect.

∗ NS :
RS,NS

RNS
∼ 6 km

10 km
∼ 0.6 GR is crucial for neutron stars.

R� RS (Condition to choose Newtonian gravity over GR) . (5)

Q: What about the universe? How does its size compare to its Schwarzschild radius?
A: We must first determine the size of the universe but it could (and likely is) infinite so this
is not very meaningful! To get around this trick question we introduce the concept of a “cosmic
horizon.” This is the volume enclosed by a light cone going back to the Big Bang. With no
empirical determination of the size of the universe we define the Hubble radius RH as the distance
light has traveled in the Hubble time tH ∼ 14 Gyr, or roughly the age of the universe. Thus,

RH ∼ ctH ∼ 5 Gpc ∼ 1028 cm . (6)

We next determine the mass contained in the universe. To do this we assume the density of the
Milky Way (MW) is representative of the average density of the universe ρ̄ or roughly

ρ̄ ∼ MMW

RMW
∼

1012 M�
Mpc3

∼
1012

(
2× 1033 g

)
(3× 1024 cm)3

∼ 10−30 g cm−3 . (7)

The mass of the universe is its average density multiplied by the volume of the cosmic horizon

MH ∼
4π

3
R3

Hρ̄ ∼
4π

3

(
1028 cm

)3 (
10−30 g cm−3

)
∼ 1055 g ∼ 1022 M� . (8)

The linear relation of Eq. 4 allows us to scale up from the solar Schwarzschild radius:

RS,universe ∼ 3 km

(
MH

M�

)
∼ 1028 cm . (9)

The punchline is summarized by

RS ∼ RH ⇒ GR is necessary in cosmology! (10)
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