
AST 376 Cosmology — Lecture Notes

Prof. Volker Bromm — TA: Aaron Smith
(Dated: February 25, 2014)

COSMIC DYNAMICS (CONTD.)

Overview of Exam 1

When: Thursday, March 6th

Softball Qs: Know the RW metric! & estimates for the age (H−1
0 ) and size (c/H0) of the Universe.

Other Qs: Similar to (i) Problem Set 1 (ii) Problem Set 2 (iii) Quiz 5 and (iv) mystery question.

Review

The idea of the previous lectures was to introduce the various contributions to the cosmic energy
budget. We will discuss some components in greater detail later.

Always remember that redshift z and scale factor a are different parameters that describe

the same thing, i.e. a = (1 + z)−1 . Because of this we can say H(z) = H(a) = H(t) , where we

originally introduced the Hubble parameter by way of Hubble’s law: v = H(t)r . Essentially, if the

physical coordinate r is related to the comoving or present day coordinate r0 by r = ar0 then the

velocity is v = ȧr0 = H(t)ar0 and ȧ/a . But the evolution of the Hubble parameter (a kind of rate

of expansion) is given by the Friedmann equation: H(z) = H0

√
Ωm(1 + z)3 + Ωr(1 + z)4 + ΩΛ .

The radiation, matter, and dark energy dominated models

(a) Radiation-dominated The epoch when matter and radiation contribute equally to the cosmic
energy budget can be determined by equating the redshift-dependent densities

ρr(t) ∼ ρm(t)

ρr,0(1 + z)4 ∼ ρm,0(1 + z)3 ,

but z � 1 so this gives a value of

zeq ∼
Ωm

Ωr
∼ 3400 (“epoch of matter-radiation equality”) . (1)

Thus, for z > zeq we can approximate the Friedmann equation by

ȧ

a
≈ H0

√
Ωr(1 + z)2 = H0

√
Ωra

−2 ,

so by separation of variables
∫
ada ∝

∫
dt. The scale factor in the radiation regime is given by

a(t) ∝ t1/2 (“Radiation-dominated”) . (2)

Note: In this model the constant of proportionality is
√

2H0

√
Ωr.



2

(b) Matter-dominated After the epoch of matter-radiation equality zeq the Universe evolves in
a condition where ρm & ρr, ρde, which lasts until the matter density falls below the density of dark
matter, so if Ωm ≡ ρm,0/ρcrit,0 and ΩΛ ≡ ρde,0/ρcrit,0 then

ρm(t) ∼ ρde(t) Ωm(1 + z)3 ∼ ΩΛ ,

and the transition redshift is

zm ∼
(

ΩΛ

Ωm

)1/3

− 1 ∼ 0.3 (“epoch of matter-dark energy equality”) . (3)

Thus, for zm < z < zeq we can approximate the Friedmann equation by

ȧ

a
≈ H0

√
Ωm(1 + z)3/2 = H0

√
Ωma

−3/2 ,

so by separation of variables
∫ √

ada ∝
∫
dt. The scale factor in the matter regime is given by

a(t) ∝ t2/3 (“Matter-dominated”) . (4)

Note: In a matter only model the constant of proportionality is
(

3
2H0

√
Ωm

)2/3
.

(c) Dark energy-dominated We are already in an era when dark energy dominates the cosmic
energy budget, which turns out to have drastic consequences about the end state of our Universe.

ȧ

a
≈ H0

√
ΩΛ ,

may be solved by separation of variables
∫

da
a = H0

√
ΩΛ

∫
dt⇒ log a = H0

√
ΩΛ(t− t0) to give

a(t) ∝ exp
[
H0

√
ΩΛ t

]
(“de Sitter Universe”) . (5)

Note: In a dark-energy only model the constant of proportionality is exp
(
−H0

√
ΩΛt0

)
.

This exponential growth is reminiscent of hyperinflation in economics and also represents the
“inflationary phase” of the early universe. However, inflation and dark energy are not the same!
Note: The Hubble parameter in the de Sitter model is constant: H(z) = ȧ/a = H0

√
ΩΛ =

constant. Usually we expect the energy density to slow down expansion, but in this case we have
an exotic cosmic acceleration! At some point the super luminous expansion will outpace what we
can see. Our choices become more limited and eventually we will only be able to observe stars
in our locally bound system. We live at an opportune time in the development of observational
cosmology. It is a so called cosmic coincidence that we happen to live at the point where ΩΛ ∼ Ωm

are the same order of magnitude.

Age of the Universe

We want a complete understanding of the history of the universe, which for now means of a(t).
For simplicity, we use the economical Friedmann equation:

H(t) =
ȧ

a
= H0

√
Ω(z) (“Economical Friedmann equation”) . (6)
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By separation of variables,
∫ a

0 da
′/a′
√

Ω(z′) = H0

∫ t
0 dt

′, which we may solve numerically. Recasting
a = (1 + z)−1 and da = −(1 + z)−2dz gives the age of the Universe as a function of redshift z:

t(z) =
1

H0

∫ ∞
z

dz′

(1 + z′)
√

Ω(z′)
(“Age of the Universe”) . (7)

The present age of the Universe is t0 = t(z = 0) ≈ 13.8 Gyr. This is an incredible accomplishment.
If there is one question in science it should be: “How old is the Universe?” Instead of a 10−20 Gyr
uncertainty we know the value to t0 = 13.798± 0.037 Gyr.

Proper distance

Recall the example of the QSO and the main steps to relate proper distance with redshift:

(i) Get rid of the angular dependence in the RW metric: ds2 = −c2dt2 + a2dr2.

(ii) Photons travel on null geodesics: ds2 = 0 ⇒ cdt = adr.

If we had a simple power law (e.g. Einstein-de Sitter) we would already know a(t) but instead we
know t(z) so we have to rework the proper distance as

r(z) =

∫ t0

t(z)

cdt

a(t)
= c

∫ 0

z

(
1 + z′

) dt
dz′

dz′ where
dt

dz
=

d

dz

∫ ∞
z

dz′/H0

(1 + z′)
√

Ω(z′)
=

−1/H0

(1 + z)
√

Ω(z)
.

Therefore the proper, or comoving, distance is

r(z) =
c

H0

∫ z

0

dz′√
Ω(z′)

(“Proper distance”) . (8)

There is one law of physics. Don’t do the calculation before you know the answer. For example,
we know that high-redshift QSOs (z ≈ 7) are near the “edge of the Universe” so rQSO ∼ 9 Gpc.
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