
AST 376 Cosmology — Lecture Notes

Prof. Volker Bromm — TA: Aaron Smith
(Dated: February 20, 2014)

COSMIC DYNAMICS (CONTD.)

Review

Modern cosmology assumes a Friedmann-Lemaitre-Robertson-Walker (FLRT) cosmology, which
is based on the RW metric and the evolution of a(t) from the Friedmann equation. Recall that the
Friedmann equation has the exact same form as the Newtonian version:(
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(“Friedmann equation”) . (1)

So why did we need GR if the Newtonian arguments gave us the exact same equation? First of
all, k is not a prediction of Newtonian theory, it is a free parameter that we have to fix. In this
regard Einstein’s theory has the powerful property that it gives physical meaning for k, which is
the curvature of the Universe. We use a flat spatial geometry so k = 0. Furthermore, GR gives
additional sources of gravity so the effective density also has a pressure term:

ρeff ≡ ρ+
3P

c2
(“effective density”) . (2)

Finally, GR allows for density contributions from radiation ρr and vacuum energy ρde.

The density components

Vacuum energy: This is the energy attached to empty space. In cosmology there are many models
for dark energy (e.g. Einstein’s cosmological constant Λ, quintessence based on scalar fields, a time-
dependent equation of state, etc.). The standard model, however, maintains a constant density

ρde(t) = ρde,0 = constant . (3)

Recall the behavior of normal matter under expansion. Usually “adiabatic cooling” means the
material experiences a loss of internal (thermal) energy according to P∆V = −∆E. Dark energy,
on the other hand, gains energy upon expansion! Consider that the change in energy is

∆E = ρde,0c
2∆V = −Pde∆V .

In order to not violate energy conservation we need negative pressure(!)

Pde = −ρdec
2 (“negative pressure”) . (4)

No self-respecting substance we know of does this! The “tension” (negative pressure) of dark energy
is apparently exactly satisfied by the work from expansion.
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Matter (“cold” matter): By cold we mean the particles are non relativistic, i.e. v � c. There
are two components: (i) cold dark matter (CDM) and (ii) “normal” baryonic matter, i.e. protons
and neutrons. The density evolution as a function of scale factor and redshift are given by

ρm = ρm,0a
−3 = ρm,0(1 + z)3 . (5)

Radiation (“hot” matter): By hot we mean relativistic particles, i.e. v is (smaller but) on
the order of the speed of light. This refers to photons, neutrinos, and extra radiation species.
However, in practice this is the cosmic microwave background (CMB) which is (loosely) the remnant
“thermal radiation” from the Big Bang. The CMB is the best blackbody we know about and has
a characteristic temperature today of ∼ 2.7 K. The evolution of radiation density is

ρr = ρr,0a
−4 = ρr,0(1 + z)4 . (6)

Radiation in thermal equilibrium follows the Stefan-Boltzmann law

u =
∆E

∆V
= aradT

4 (“Stephan-Boltzmann law”) (7)

where arad ≡ 4σ/c = 7.56× 10−15 erg cm−3 K−4 is the radiation constant. Therefore, the temper-
ature of the CMB is inversely proportional to the scale factor because the energy density is

u = c2ρr ⇒ T ∝ a−1 ∝ (1 + z) (“CMB temperature scaling”) . (8)

The economical Friedmann equation

We now define the densities in terms of the critical density:

Ωm ≡
ρm,0

ρcrit,0
Ωr ≡

ρr,0
ρcrit,0

ΩΛ ≡
ρde,0

ρcrit,0
where ρcrit,0 ≡

3H2
0

3πG
. (9)

Note: The convention is to drop the ‘0’ subscripts even though the Ωi represent present day values.
Therefore, the Friedmann equation is

ȧ

a
= H0

√
Ωm(1 + z)3 + Ωr(1 + z)4 + ΩΛ (“Friedmann equation”) . (10)

Finally, if we define Ω(z) ≡ Ωm(1 + z)3 + Ωr(1 + z)4 + ΩΛ and recall that H(t) ≡ ȧ
a then we have

H(t)

H0
=
√

Ω(z) (“Economical Friedmann equation”) . (11)

Note: Plugging in present day values gives Ω(z = 0) = Ωm + Ωr + ΩΛ = 1 for a flat Universe.

Cosmological parameters

We are in an era of precision cosmology, which is possible by using combined Supernova (SN;
e.g. with HST) and CMB (e.g. with WMAP, Planck, high-`) data. The precision values are
Ωm ≈ 0.307, ΩΛ ≈ 0.692 ± 0.010, Ωr ≈ 9 × 10−5 ≈ 0, and H0 ≈ 67.8 ± 0.77 km s−1 Mpc−1. It is
usually good enough to ignore radiation and assume

ΩΛ ∼ 0.7 , Ωm ∼ 0.3 , and H0 ∼ 70 km s−1 Mpc−1 (“ΛCDM model”) . (12)
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Solutions to the Friedmann equation

The redshift dependence of ρr, ρm, and ρde naturally leads to three regions: (a) radiation-
dominated, (b) matter-dominated, and (c) dark energy-dominated. The exact solution is best
understood when considering these isolated situations.

(a) Radiation-dominated The epoch when matter and radiation contribute equally to the cosmic
energy budget can be determined by equating the redshift-dependent densities

ρr(t) ∼ ρm(t)

ρr,0(1 + z)4 ∼ ρm,0(1 + z)3 , (13)

but z � 1 so this gives a value of

zeq ∼
Ωm

Ωr
∼ 3400 (“epoch of matter-radiation equality”) . (14)

Thus, for z > zeq we can approximate the Friedmann equation by

ȧ

a
≈ H0

√
Ωr(1 + z)2 = H0

√
Ωra

−2 ,

so by separation of variables
∫
ada ∝

∫
dt. The scale factor in the radiation regime is given by

a(t) ∝ t1/2 (“Radiation-dominated”) . (15)

Note: In this model the constant of proportionality is
√

2H0

√
Ωr.
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