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COSMIC SPACETIME (CONTD.)

Review

Last time we unveiled the metric of the Universe:

ds2 = gµνdx
µdxν = −c2dt2 + a2

(
dr2 + r2dϑ2 + r2 sin2 ϑdϕ2

)
(“Robertson-Walker”) . (1)

We have gone from ten unknowns in the metric gµν to just one time-dependent scale factor a(t)!

Q: Does the Robertson-Walker (RW) metric provide any new information about the Universe?
A: Yes! The metric gives us access to proper (or physical) distances. To motivate this we con-
sider the object ULAS J1120+0641, which happens to be the most distant known quasar in the
Universe. The spectra from the QSO (quasi-stellar object) reveals the flux – or what is measured
through the detectors in our telescopes – as a function of wavelength. The figure shown in class
shows the distinct Lyman-alpha (Lyα) line at the observed wavelength of λobs ≈ 1 µm, however,
the Lyα rest wavelength was emitted at λem = 1216 Å = 0.1216 µm. This implies a redshift of
z = λobs/λem − 1 ≈ 7.1 due to Hubble expansion.

Note: The unit of Angstrom (1 Å ≡ 10−10 m) corresponds to the typical size of atoms.

There are many distances in cosmology (e.g. proper and comoving distances, light propaga-
tion distances, characteristic scales, sound horizons, the angular diameter distance, etc.)! We
want to relate these distances to each other in order to understand their context. Fortunately,
we already know how the proper distance changes with time. If the present day distance is r0

then the proper distance r(t) at any other time is proportional to the scale factor, i.e. r(t) = r0a(t).

Recall: The present day values for time, scale factor, and redshift are t = t0, a = a(t0) = a0 ≡ 1,
and z = z(t0) = z0 = 0, respectively. Also, a and z are related by a = (1 + z)−1 and z = a−1 − 1.

Measuring distances on cosmological scales is not a straightforward task! We may locally ignore
the effects of spacetime expansion and in some cases obtain high-precision measurements directly.
However, there is no ‘measuring stick’ that instantaneously allows us to read off the distance to
ULAS J1120+0641! For such distant objects we must appeal to calibrated methods inferred by
the ‘distance ladder’ which takes advantage of so-called ‘standard candles’. In our case we only
have the redshift of the QSO, but this is enough if we also have a good model for the evolution
of the Universe, i.e. an expression for a(t). Without this realistic model all we know is that
the light propagation distance cdt is shorter than the current proper distance r0 and longer than
proper distance r(z = 7.1) when the original light was emitted. This is because the Universe has
undergone expansion over the course of the several Gyr journey the photons took to reach our
detectors. In general, although we still need to know a(t) the distances are related by

r0 > cdt > r(z) =
r0

1 + z
. (2)



2

The proper length

As an example of how to use the RW metric we now consider the proper length ` to the QSO.
This corresponds to a constant time, or dt = 0 in Eq. 1. By orienting the z-axis along the direction
of the light from the QSO to us gives dϑ = dϕ = 0. Together this means proper lengths follow

d`2 = ds2 = a2dr2 ,

which can be integrated from the QSO (r = 0) to us (r = r0) to give

`(t) =

∫ r0

0
a(t)dr = r0a(t) (“proper length”) . (3)

Therefore, proper lengths are described by physical coordinates and at present `0 = r0.

The light propagation distance

We only know about the QSO spectrum because of the light we observe. These photons travel
along null geodesics so we may set the line element to zero,

ds2 = −c2dt2 + a2(t)dr2 = 0 ⇒ cdt = a(t)dr ,

and use separation of variables to find the integrated distance from the QSO to us:

r0 =

∫ r0

0
dr =

∫ t0

t(a)

cdt′

a(t′)
=

∫ 1

a

cda′

a′ 2H(a′)
=

∫ z

0

cdz′

H(z′)
(“comoving distance”) . (4)

In the last equalities we have used that ȧ = da/dt = aH(t) and da/dz = −a2. To compute the
integral we need to solve for a(t) from the Einstein equations, which is done in the next section.

COSMIC DYNAMICS

In order to solve the Einstein field equations we need to use the machinery of differential
geometry that we discussed briefly before. We do not have time to cover this in full detail. Instead,
we point to Appendix C of Oyvind Gron/Arne Naess: “Einstein’s Theory” (Springer) available
through the UT Austin online library system. There the RW metric is used to calculate Christoffel
symbols Γαµν (combinations of first derivatives

∂gµν

∂xα ) and then the Ricci tensor Rµν (combinations of
first and second derivatives). Finally, this geometric LHS is set equal to the physics from the stress
energy tensor Tµν on the RHS. After some tedious algebra we find two independent equations:

2
ȧ2

a2
+
ä

a
= 4πG

(
ρ− P

c2

)
(5a)

3
ä

a
= −4πG

(
ρ+

3P

c2

)
(5b)

These are just intermediate equations but there is a striking connection to the Newtonian expres-
sion, i.e. recall from before that ä = −GM

a2
= −4πG

3 ρa. Thus, the crucial addition in Einstein’s
theory is to replace density with an “effective density” defined by

ρeff ≡ ρ+
3P

c2
(“effective density”) . (6)

http://catalog.lib.utexas.edu/record=b8055062~S29
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We can simultaneously eliminate the pressure and ä terms to combine this into one equation:

(
ȧ

a

)2

=
8πG

3
ρ (“Friedmann equation”) . (7)

Sometimes this is called the Friedmann-Lemaitre (FL) equation and the various models based on
versions of this equation are “FL models”. Finally, modern cosmology is roughly synonymous with
“FLRW cosmology” where RW refers to the metric and FL describes solutions of a(t).

Q: What is the density ρ in the Friedmann equation?
A: The main contributions come from matter ρm (cold dark matter and baryons), radiation ρr
(CMB photons), and dark energy ρde (or vacuum energy), yeilding

ρ = ρ(t) = ρm + ρr + ρde . (8)

How do these terms evolve with time?

Matter (DM + baryons): Consider a box expanding in time. Mass conservation tells us the
number of particles in a comoving volume is constant in time, but Mass = Density×Volume so

M0 = M(t) ⇒ ρm,0a
3
0 = ρma

3

gives the evolution of matter density as a function of scale factor or redshift:

ρm = ρm,0a
−3 = ρm,0(1 + z)3 . (9)

Radiation (CMB photons): Although photons are also conserved their mean energy is reduced
with redshift according to 〈εγ〉 = hν = hc

λ ∝ a
−1. Therefore, because the energy density of radiation

is ρrc
2 = nγ〈εγ〉 the evolution of radiation density is

ρr = ρr,0a
−4 = ρr,0(1 + z)4 . (10)

Vacuum energy (dark energy): Finally, because the “energy of space itself” is only concerned
about how much space is physically available, the vacuum energy density is constant in time

ρde = ρde,0 = constant . (11)
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