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GENERAL RELATIVITY (GR) – A VERY BRIEF INTRODUCTION

So far we have pushed Newtonian cosmology to the limit; we have gone as far as we can without
appealing to general relativity (GR). Some of the important topics we have discussed are the
cosmological principle and the dichotomy of an inwardly-directed gravitational force competing
against the impetus of Hubble flow. However, Einstein-de Sitter is as far as we can go with
Newtonian cosmology. Recall the critical density is ρcrit,0 ≡ 3H2

0/8πG so if ρ > ρcrit,0 we have
a Big Crunch and if ρ ≤ ρcrit,0 the universe expands forever. An Einstein-de Sitter universe has
ρ = ρcrit,0, is flat (i.e. Ω = 1), and is matter-dominated so that

H = H0a
−3/2 yielding the solution a(t) ∝ t2/3 (“Einstein-de Sitter universe”) . (1)

Special Relativity (SR)

We first cover a few essential concepts and formalisms that are most easily introduced in special
relativity (SR). Events A and B can be described in different (x-directed) inertial reference frames
by generalized 4-vectors. Here we use a prime to denote a different coordinate system, however,
both are valid descriptions of what is happening in spacetime:

A = (tA, xA, yA, zA) = (t′A, x
′
A, y

′
A, z

′
A) = A′

and

B = (tB, xB, yB, zB) = (t′B, x
′
B, y

′
B, z
′
B) = B′ .

We may compare two events by their differences, which signify the physical length or elapsed time:

∆t = tB − tA , ∆x = xB − xA , ∆t′ = t′B − t′A , ∆x′ = x′B − x′A , etc.

However, because time is fundamentally different than space we can no longer apply a simple
Galilean coordinate transformation (e.g. x′ = x− vt). Instead we use a Lorentz transformation
which acts as a dictionary to communicate the events from the frames of two observers:

∆t′ =
∆t− (v/c2)∆x√

1− (v/c)2
, ∆x′ =

∆x− v∆t√
1− (v/c)2

, ∆y′ = ∆y , and ∆z′ = ∆z . (2)

Note: In SR we often use β ≡ v/c and γ ≡ (1− β2)−1/2 to simplify our notation.
The differences can be made arbitrarily small so that ∆x → dx. Thus, the spacetime interval
corresponding to this Lorentz transformation is

ds2 = −c2dt2 + dx2 + dy2 + dz2 (“invariant spacetime interval”) . (3)

Note: We could have chosen to have ds̃2 = c2dt2−dx2−dy2−dz2 instead but as we prefer to think
of positive cosmological distances we have (+) for spacelike vectors and (−) for timelike vectors.
The spacetime interval gives us access to what is “real” in the universe.



2

Now the proper time τ is always measured in the rest-frame where the spatial coordinates do not
change (i.e. dτ = dt′ and dx′ = dy′ = dz′ = 0). In this frame the spacetime interval is simplified:

ds2 = −c2dτ2 . (4)

Likewise, the proper distance ` is the at rest distance where the time is fixed (i.e. dt = 0), or

ds2 = d`2 = dx2 + dy2 + dz2 . (5)

We can write the spacetime interval in a neat (compact) way by viewing it as a matrix multi-
plication. If we represent the Minkowski metric ηµν by the diagonal matrix

ηµν =


−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 ,

and a general differential distance as the vector dxµ = (cdt, dx, dy, dz) then the spacetime interval
can be written as

ds2 =
∑
µ

∑
ν

ηµνdx
µdxν =

(
cdt dx dy dz

)
−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1



cdt
dx
dy
dz

 = −c2dt2 + dx2 + dy2 + dz2 .

An even more economical expression uses the “Einstein summation convention” where we sum over
repeated indices which will be important in GR so get used to the following(!):

ds2 = ηµνdx
µdxν (Minkowski Line Element). (6)

In SR spacetime is said to be “flat” so what does this mean? For our purposes we say the metric
can be transformed so that the derivatives of the metric vanish (i.e. ∂ηµν/∂x

α = 0). Note however
that different coordinate systems could be more complicated. For example, the Minkowski metric
in spherical coordinates is ηµν = diag(−1, 1, r2, r2 sin θ). In GR we divorce the coordinate system
from the physics! True physics originates from proper time, not coordinate time.

We conclude the lecture by writing the (SR) laws of motion in a coordinate-invariant way. We
have already seen this because the spacetime interval is a Lorentz invariant quantity. There are
others! For example, velocity is defined according to the proper time as

vα =
dxα

dτ
= γ

dxα

dt
= γ (c,~v) , (7)

where ~v is the 3-dimensional coordinate velocity we are used to. Likewise the “4-momentum” is

pα = m0v
α =

( ε
c
, ~p
)
, (8)

where m0 is the rest mass, ε is the energy, and ~p is the familiar 3-dimensional momentum. Now
we have a method to write the laws of nature in an invariant form:

If Newton says

~F = m0~a ,

then Einstein says

fα =
dpα

dτ
.

Force-free motion requires dpα/dτ = 0.
Note: The equivalent of an ‘inertial’ frame in SR is a ‘freely-falling’ frame in GR.
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Newtonian Gravity

Recall the universal law of gravitation for two particles:

~F = −GMm

r2
êr or ~F = m~g .

However, the mass here is the ‘gravitational mass’ mg because it measures how strongly the object
is coupled to the gravitational field.

We may introduce this in terms of a gravitational potential ϕ = −GM/r for a point source:

~g = −~∇ϕ . (9)

Or re-phrase it by taking the divergence and identifying the Laplacian operator (∇2 ≡ ~∇ · ~∇) so

~∇ · ~g = −∇2φ .

If we integrate over a surface specified by d ~A and apply Gauss’s Theorem then

−
∫
∇2ϕdV =

∫
~∇ · ~gdV =

∫
~g · d ~A = −4πr2g = −4πG

∫
ρ(r)dV

and we get Poisson’s equation:

∇2ϕ = 4πGρ (Poisson’s Equation) . (10)

This is the “field equation for Newtonian gravity” and gives an equation for the field for all ~r.
The Equation of motion is given by applying Newton’s Second Law, where the mass for this

law is the ‘inertial mass’ mi,

mi
d2~r

dt2
= ~F = mg~g ,

and it is not at all obvious that mi = mg = m! We shall take this as an experimental fact as shown
by Galileo at the tower in Pisa. (We shall see that Einstein’s theory predicts the equivalence of
the different types of masses.) The next step is to cancel the masses to get the equation of motion

d2~r

dt2
= ~g = −~∇φ (Equation of Motion) . (11)
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