Course: AST 210K/PHY 101L or AST 375 or CS 378: Cosmic Dawn FRI Stream
Semester: Spring 2013
Unique No.: AST 210K/PHYS 101L: 47985/57620 or AST 375: 48035 or CS 378: 53560
Hours: M & W 2-3 pm
Locations: RLM 7.116 (practicum)
RLM 5.122 (lectures)
RLM 15.201 (additional lab for assignments and research)
Prerequisites: FRI Intro. to Research Methods (including AST 376) or by permission
Website: http://www.as.utexas.edu/~gfigm/fri/
Instructors: Prof. Paul Shapiro (Principal Investigator)
Office: RLM 16.204
phone: 512-471-9422
e-mail: shapiro @ astro.as.utexas.edu
Office Hours: immediately following class or by appointment
Dr. Anson D’Aloisio (Research Educator)
Office: RLM: 16.202
phone: 512-471-2785
e-mail: anson @ astro.as.utexas.edu
Office Hours: W 3:00-4:00pm (immediately following class, see help sessions section) in RLM 7.116 or by appointment
TA: Hyunbae Park
Office: RLM 16.112
phone: 512-471-8443
e-mail: hcosmosb@astro.as.utexas.edu
Office Hours: T 2:00-3:30pm in RLM 15.201 (see help sessions section) or by appointment
Mentors: Olivia Biehle (oliviabiehle@utexas.edu), Rogelio Cortez (rogelio.cortez@utexas.edu), Julie Gerzina (jgerzina@utexas.com), and Jacob Schmelz (jschmelz@utexas.edu)
Lab access: RLM 7.116, W 3:00-5:00pm
RLM 15.201, T 2:00-3:30pm, F 2-3pm, or any hour which is not booked for exclusive use by another class
Help sessions: W 3:00-4:00pm in RLM 7.116 (D’Aloisio), T 2:00-3:30pm in RLM 15.201 (Park)
Overview: As a student in the Cosmic Dawn research stream, you will get to analyze and visualize new cosmological simulations. These simulations will utilize the computational resources of the Texas Advanced Computing Center, and will be among the most advanced in the world. We will provide you with the necessary background to participate in original scientific research in Cosmology and Astrophysics. This includes (but is not limited to) elements of computer programming, an introduction to supercomputing, scientific visualization, physics, astronomy, and mathematical techniques. You will interact with experienced researchers in a team effort to break new ground in this exciting field. A tentative course schedule is provided as an attachment to this syllabus. Note that the schedule is subject to change as we adjust material to meet the research goals for the course. More detailed information, including reading material
and homework assignments, will be provided separately. The grade breakdown for the course is as follows: 5% participation, 15% lab notebook, 30% homework and research assignments, 15% group oral presentation, 10% group poster paper, 25% final paper. More details on these grading criteria are described below.

Exams:
None.

Homework:
Homework and research assignments are worth 30% of your grade and will generally be due a week after they are assigned at the beginning of class. Late homework will not be accepted. We will drop your lowest two homework/research assignment grades.

Grading:
Your letter grade will be assigned on the plus-minus system.

Notebook:
Keeping a record of the steps you take to find a result is a critical part of being a good scientist. As such, you are required to maintain a clear and legible lab notebook. As a guideline for keeping a good lab notebook, someone should be able to reproduce your result independently simply by following your notebook, without additional input from you. We will randomly check notebooks periodically throughout the semester. Your lab notebook will be worth 15% of your grade.

Final Paper:
At the end of the semester, you will hand in a final write-up of the work you did in Cosmic Dawn, including the scientific motivation, your methods, the results, and the scientific implications of the results. This will be worth 25% of your final grade.

Oral and Poster Presentations:
At the end of the semester you and a group of your fellow students will give an oral presentation to the class on the research conducted over the course of the semester, and prepare a poster paper on it. You will need to give scientific motivation for your topic, and describe what you found clearly and within the given time limits. This will be worth 25% of your grade.

Academic Dishonesty:
We have a zero tolerance policy regarding cheating and plagiarism. All students involved in either of these acts will receive zero credit for the work in question and may be subject to further disciplinary action by the University of Texas.

Absences:
If you must miss class for any reason (i.e. illness, family emergency, etc...), please notify Dr. D'Aloisio ahead of time. You are responsible for the missed material and completing your work within the allowed time frame (see above). In the event of an absence, please feel free to come to office hours for assistance.

According to UT Austin policy, you must notify us of your pending absence at least fourteen days prior to the date of observance of a religious holy day. If you must miss a class, an examination, a work assignment, or a project in order to observe a religious holy day, you will be given an opportunity to complete the missed work within a reasonable time after the absence.

Disabilities:
Students with disabilities can request necessary accommodations from the Division of Diversity and Community Engagement, Services for Students with Disabilities (512-471-6259 or www.utexas.edu/diversity/ddce/ssd/)
Cosmic Dawn: How the first galaxies formed, ended the dark ages, and reionized the Universe

What are the differences between galaxies born and raised in regions of space that were either crowded or sparse, and how did these differences affect the end of the cosmic dark ages?

Prof. Shapiro's group studies the first billion years of cosmic time when the first galaxies and stars were born, the last window of cosmic time accessible to direct observation. To test current theory, they use supercomputers to simulate the formation of galaxies and large-scale structure in the expanding universe. When these galaxies formed stars, starlight escaped into the surrounding gas, heating and ionizing it. This "feedback" impacted future galaxy and star formation and left observable imprints on the universe which astronomers are just now beginning to detect. Students will help make new discoveries with the most advanced simulations in the world, performed at the Texas Advanced Computing Center at UT.

In spring 2012, we studied the results of a cosmological N-body simulation of galaxy and large-scale structure formation in the LCDM model of the Universe, during the first billion years of cosmic time. We focused on the galactic halos that formed and analyzed the internal properties of individual halos and the correlations between different properties. Our results were presented in a class poster paper. Our summer fellows and continuing students in fall 2012 refined these results and helped lay the groundwork for the next step, in which we will study the environmental dependences of these halo properties, this semester.
Tentative Course Schedule (up to the week of 3/11/2013)

<table>
<thead>
<tr>
<th>Date</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/14</td>
<td>RLM 5.122</td>
</tr>
<tr>
<td>Lab 1: Introduction to Unix</td>
<td>1/16</td>
</tr>
<tr>
<td>No class: M.L.K Jr. holiday</td>
<td>1/21</td>
</tr>
<tr>
<td>Lab 2: Introduction to Unix part 2 and the Texas Advanced Computing Center</td>
<td>1/23</td>
</tr>
<tr>
<td>Lecture 1: Cosmic overview, mechanics and gravitation</td>
<td>1/28</td>
</tr>
<tr>
<td>Lab 3: Introduction to scientific data visualization with VisIt</td>
<td>1/30</td>
</tr>
<tr>
<td>Lecture 2: Mechanics continued, 1D projectile motion in a gravitational field</td>
<td>2/4</td>
</tr>
<tr>
<td>Lab 4: Scientific data visualization 2</td>
<td>2/6</td>
</tr>
<tr>
<td>No lecture</td>
<td>2/11</td>
</tr>
<tr>
<td>Lab 13: Overview of ACES VisLab resources</td>
<td>2/13</td>
</tr>
<tr>
<td>Lecture 3: The expanding Universe, the Friedmann equations</td>
<td>2/18</td>
</tr>
<tr>
<td>Lab 5: Basics of IDL</td>
<td>2/20</td>
</tr>
<tr>
<td>Lecture 4: The Friedmann equations continued, the fate and age of the Universe</td>
<td>2/25</td>
</tr>
<tr>
<td>Lab 4: Basics of IDL 2: writing and executing scripts</td>
<td>2/27</td>
</tr>
<tr>
<td>Lecture 5: Structure formation in the Universe, gravitational collapse</td>
<td>3/4</td>
</tr>
<tr>
<td>Lab 7: Manipulating our cosmological simulation data with IDL</td>
<td>3/6</td>
</tr>
</tbody>
</table>