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GENERAL RELATIVITY

The relativistic field equation

Last time we were well on our way to establishing the relativistic version of the Poisson equation:

∇2ϕ = 4πGρ . (1)

The right hand side was generalized by using the stress energy tensor

Tµν =


ρc2 0 0 0
0 P 0 0
0 0 P 0
0 0 0 P

 (“Stress-energy tensor”). (2)

Recall that a tensor is a sort of generalized vector so it is independent of the coordinate system
used. Formally this means a tensor transforms in a specific manner under a change of coordinates
from xµ = (x0, x1, x2, x3) to xµ

′
= (x0′ , x1′ , x2′ , x3′)

pµ
′

=
∂xµ

′

∂xµ
pµ

for a vector and the stress energy tensor

Tµ′ν′ =
∂xµ

∂xµ′
∂xν

∂xν′
Tµν

provides an example for higher rank tensors.
In seeking a tensorial field equation we made the guess

−∇2gµν =
8πG

c4
Tµν ,

but this cannot possibly be what we are after because ∇2 is not a tensor operation. It is not
invariant! Another reason is that ∇2 only acts on spatial coordinates. In relativity space and time
are treated on equal footing. We can try to incorporate time by using the d’Alembertian operator

� ≡ ∇2 − 1

c2

∂2

∂t2
,

which is−∂2/∂(ct)2+∂2/∂x2+∂2/∂y2+∂2/∂z2 in cartesian coordinates. Furthermore, conservation
of energy places a constraint on the form of Tµν . In analogy to electromagnetism (i.e. ~∇ · ~B = 0)
we require that the stress energy tensor is divergence-less under a generalized Div operator. To
summarize, our requirements for the LHS, which we will call the Einstein tensor Gµν are:

(i) Tensorial second derivatives in curved spacetime and

(ii) Energy conservation requires that the tensor satisfy Div(Gµν) = 0.
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The only combination obeying these properties is the Einstein tensor(!):

Gµν = Rµν −
1

2
gµνR =

8πG

c4
Tµν (Relativistic field equation). (3)

Here the Ricci tensor is built up from the Christofel symbols:

Rµν =
∂Γαµν
∂xα

−
∂Γαµα
∂xν

+ ΓαβαΓβµν − ΓαβµΓβαν (Ricci tensor), (4)

and the Ricci scalar R is the contraction of the Ricci tensor

R = gµνRµν (Ricci scalar). (5)

The Einstein field equation represents 10 independent equations as Gµν and Tµν are symmetric.

Total source of gravity

The “effective density” ρeff is taken as the contraction (or “trace”) of the stress energy tensor

ρeff =
1

c2
(T00 + T11 + T22 + T33) = ρ+

3P

c2
. (6)

This additional source of gravity from pressure contributes to the overall density and makes possible
the gravitational collapse of massive stars to black holes. This also shows why gravity in GR is
more complicated. As mass is added it couples with other gravitational contributions, making the
equations nonlinear and very complicated! Schematically Eq. 3 can be understood as(

curvature
of spacetime

)
=

8πG

c4

(
energy
density

)
. (7)

Eq. 7 relates the fact that matter tells space how to curve, and space tells matter how to move.
Note: Einstein’s “greatest blunder” was to also add a cosmological constant Λgµν to the left hand
side of Eq. 3. Although he abandoned it with the discovery of Hubble expansion the term is now
standard for the mysterious ‘dark’ energy component.

Hydrostatic equilibrium in GR

To apply GR to stellar equations we need to generalize the equation of hydrostatic equilibrium:

P

r
= −ρg = −ρGm(r)

r2
(Newtonian HSE). (8)

The following alterations must be made for our pseudo-Newtonian argument:

(i) Here ρ is the “measure of inertia” so we account for pressure contributions. Replace:

ρ→ ρ+
P

c2
= ρ

(
1 +

P

ρc2

)
.

(ii) Mass m is a source of gravity so it is an effective mass. Replace:

m→ meff =
4πr3

3
ρeff =

4πr3

3
ρ+ 4πr3 P

c2
= m+ 4πr3 P

c2
= m

(
1 +

4πr3P

mc2

)
.
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(iii) Space in the gravitational field is revised. Replace:

r2 → r2

(
1− 2Gm

rc2

)
.

The result is a direct replacement in the Newtonian equation of HSE:

dP

dr
= −ρ

(
1 +

P

ρc2

) Gm
(

1 + 4πr3P
mc2

)
r2
(
1− 2Gm

rc2

) ,

which is expressed as small deviations from the original version

dP

dr
= −ρGm

r2

(
1 +

P

ρc2

)(
1 +

4πr3P

mc2

)(
1− 2Gm

rc2

)−1

(Oppenheimer–Volkoff). (9)

Note: We recover the Newtonian expression for weak fields ϕ ∼ Gm
rc2
→ 0 and low pressure

P � ρc2. Also if c→∞ we recover Newton’s action at a distance.
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