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GENERAL RELATIVITY

Review

The big idea of general relativity (GR) is that “gravity is the curvature of spacetime.” Einstein
came up with the conceptual ideas before he figured out the math. Because of this we can actually
understand quite a bit of the theory without getting bogged down by the abstract details. Ideas
come in the form of thought experiments. For example, the equivalence principle equates gravity
to acceleration, but there is a way to distinguish the two – Gravity induces tidal forces on freely
falling objects. Thus, gravity acts as a lens to focus (free-fall) geodesics. The connection is that
this happens in curved spaces as well so geometry is gravity!

The next thing we need is a field version of Newtonian gravity which will be used to check the
validity of our theory (e.g. GR). The equations we derived are:

∇2φ = 4πGρ (Poisson’s Equation) (1)

and

d2~r

dt2
= ~g = −~∇φ (Newtonian Equation of Motion). (2)

Also recall the “pseudo-Newtonian” arguments for gravitational redshift:

ν∞ = νem

(
1 +

φ

c2

)
(Pseudo-Newtonian Gravitational Redshift), (3)

which can be expressed with a dimensionless doppler shift

∆ν

νem
=
ν∞ − νem
νem

=
GM

Rc2
.

This is typically small and from the quiz we learned GM�/R�c
2 ∼ 10−6.

Special Relativity (SR)

We have already covered the basic concepts but to be sure we will discuss some formalism
and results. Events in inertial systems (IS) can be described in different coordinate systems by a
generalized vector:

A = (t, x, y, z) = (t′, x′, y′, z′) .

However, because time is fundamentally different than space we can no longer apply a simple
Galilean coordinate transformation (e.g. x′ = x− vt). Instead we use a Lorentz transformation:

∆x′ =
∆x− c∆t√
1− (v/c)2

, ∆y′ = ∆y , ∆z′ = ∆z , and ∆t′ =
∆t− (v/c2)∆x√

1− (v/c)2
. (4)
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The differences can be made arbitrarily small so that ∆x → dx. Thus, the spacetime interval
corresponding to this Lorentz transformation is

ds2 = −c2dt2 + dx2 + dy2 + dz2 . (5)

Now the proper time is always measured in the rest-frame where the spatial coordinates do not
change (i.e. dτ = dt′ and dx′ = dy′ = dz′ = 0). In this frame the spacetime interval is simplified:

ds2 = −c2dτ2 . (6)

We can write the spacetime interval in a neat (compact) way by viewing it as a matrix multiplica-
tion. If we represent the Minkowski metric ηµν by the diagonal matrix

ηµν =


−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 ,

and a general differential distance as the vector dxµ = (cdt, dx, dy, dz)T where T denotes transpose
then the spacetime interval can be written as

ds2 =
∑
µ

∑
ν

ηµνdx
µdxν =

(
cdt dx dy dz

)
−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1



cdt
dx
dy
dz

 = −c2dt2 + dx2 + dy2 + dz2 .

An even neater way is to use the “Einstein summation convention” where we sum over repeated
indices which will be important in GR so get used to the following(!):

ds2 = ηµνdx
µdxν (Minkowski Line Element). (7)

In SR spacetime is said to be “flat” so what does this mean? For our purposes we say the metric
can be transformed so that the derivatives of the metric vanish (i.e. ∂ηµν/∂x

α = 0). Note however
that different coordinate systems could be more complicated. For example, the Minkowski metric
in spherical coordinates is ηµν = diag(−1, 1, r, r sin θ). In GR we divorce the coordinate system
from the physics! True physics originates from proper time, not coordinate time.

We conclude the lecture by writing the (SR) laws of motion in a coordinate-invariant way. We
have already seen this because the spacetime interval is a Lorentz invariant quantity. There are
others! For example, velocity is defined according to the proper time as

vα =
dxα

dτ
= γ

dxα

dt
= γ (c,~v) , (8)

where ~v is the 3-dimensional coordinate velocity we are used to. Likewise the “4-momentum” is

pα = m0v
α =

( ε
c
, ~p
)
, (9)

where m0 is the rest mass, ε is the energy, and ~p is the familiar 3-dimensional momentum. Now
we have a method to write the laws of nature in an invariant form:

If Newton says

~F = m0~a ,

then Einstein says

fα =
dpα

dτ
.

Force-free motion requires dpα/dτ = 0.
Note: The equivalent of an ‘inertial’ frame in SR is a ‘freely-falling’ frame in GR.
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