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CLASSICAL/QUANTUM GAS BOUNDARY

Review

Quiz: What is the temperature T of a (spherical) gas cloud with radius R ∼ 100 pc (∼ 3×1020 cm)
and mass M ∼ 106 M� (∼ 2 × 1039 g)? The OoMA answer is given by considering the pressure
from two different directions. First we consider the energy and continue with the viral theorem:

P ≈ ukin ≈ |upot| ≈
GM2

RV
.

Next we pursue pressure from the direction of the ideal gas law:

P ≈ nkBT ≈
N

V
kBT ≈

M

mHV
kBT .

Here we have assumed that this was all hydrogen so that the number of particles is given by the
total mass M divided by the particle mass mH. Equating these two pressures gives

T ≈ GMmH

kBR
≈ 103 − 104K .

This is a cosmological “mini halo” where the real answer is around 5,000 K so we have done well!
Also we want to make sure this is reasonable in case we make a calculator or mental math

mistake. The coldest astrophysical temperatures are limited by the pervasive cosmic microwave
background (CMB) which is about 3 K. The hottest temperatures are probably those found as a
supernova (SNe) explodes which is about 1010 K. Therefore a feeling for temperature situations is

1 K . T . 1010 K (Realistic Temperature Range) .

Classical/Quantum Gas Boundary

Additional physics beyond the Classical + NR regime happens because the density of the star
increases, perhaps because the main sources of thermal pressure (fusion) have been exhausted.
When this happens we break the quantum barrier before the special relativistic limit.

So where does quantum pressure originate? The answer is the Pauli Exclusion Principle which
prevents Fermions (electrons, protons, . . .) from being compressed to arbitrarily high densities.

When does Quantum Mechanics (QM) become important? The answer has to do with the
particle/wave duality! QM is all about probabilities so in effect it smears out space on small scales.
If two wave functions get too close to each other then the overlapping (Fermi) pressure pushes
them apart. Let’s return to the picture of N particles in a box of volume V = L3. The average
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distance between particles ` is derived by considering that the volume around one particle is `3

and N of those volumes gives the total volume, i.e.

Vtotal = NVone−particle ⇒ L3 = N`3 ⇒ ` =

(
V

N

)1/3

∼ n−1/3 . (1)

Consider: The particle wavelength depends directly on Planck’s constant h = 6.626× 10−27 erg s
and inversely on the particle momentum p so that QM effects kick in when

` . λdB ≡
h

p
(“de Broglie wavelength”) . (2)

Notes: Units of energy · time is called “action.” NR momentum is p = m0v.

Equation ?? means

n−1/3 .
h

p
⇒ p . hn1/3 ,

which happens with cold (slow-moving) dense gas is in danger of becoming degenerate. We can
rephrase this in terms of temperature by considering

3

2
kBT = εkin =

p2

2m0
.

However, this is an OoMA calculation so

kBT ≈
p2

m0
.
h2n2/3

m0
.

In either case we get a temperature dependance of

T ∝ n2/3 . (3)

Quantum (“degenerate”) gas

Heisenberg Uncertainty: The topic of quantum distributions is advanced but all of the
‘simple’ ideas we discuss are true so you won’t need to ‘unlearn’ them later. First we consider
6-dimensional phase space (~x, ~p) = (x, y, z, px, py, pz) and we chop it up into small boxes of length
Planck’s constant h. Here we designate the spatial volume as V or equivalently Vx to have an
unambiguous way to distinguish from the momentum volume Vp. The differential volume of these
cells is dVxdVp = d3x d3p = h3. This comes from the one dimensional Heisenberg Uncertainty
Relation that ∆x∆p & h. (You may find other constants such as ~ = h/2π but we do not worry
about such details.)

The Pauli Exclusion Principle: “Only 2 (or less) Fermions (e.g. electrons) are allowed per
quantum cell” so we assume a tightly packed grid according to that rule! An ideal gas follows the
same rules but is very sparse in the ‘grid’ we have built. The tight packing is called “complete
degeneracy” and intermediate cases (between complete degeneracy and the ideal gas case) are
called “partial degeneracy” which adds algebraic complexity but no new physical insight so we do
not talk about them.
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Particles are distributed into the lowest energy states first! Our model is to fill these levels
completely and create a “surface of the Fermi sea” up to the Fermi momentum pF. (As a preview
we can now see why we eventually have to turn to special relativity, the Fermi energy εF becomes
comparable to m0c

2.) We can visualize this “sea” as an isotropic sphere in momentum space
assembled one block at a time from the origin outward.

To get the total number of particles we use the (spin) degeneracy gi multiplied by the total
volume divided by the volume of one particle:

N = gi
VxVp

Vone−particle
= 2

4π
3 p

3
FV

h3
=

8π

3h3
p3FV

but the number density is

n =
N

V
=

8π

3h3
p3F

so the final Fermi momentum is

pF = h

(
3

8π

)1/3

n1/3 . (4)
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