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PHYSICS OF COMPACT OBJECTS (CONTINUED)

Review

Recall last time that we reviewed the equation of Hydrostatic Equilibrium (HSE)

dP

dr
= −ρg . (1)

This is one of the most important equations in astrophysics because it quite accurately describes
the condition of stable stars.

We also discussed timescales. Before you attempt an expensive computation you want to make
sure you are getting the relevant information. For example, if the timescale of your interesting
physics is 1012 years then this is longer than the age of the Universe!

Finally remember that there are many ways to look at a problem, e.g.

Pc ≈
GM2

R4
=
GM2/R

R3
=

energy

volume
.

A different way to look at HSE:

We have already encountered two quantities which describe the strength of the gravity – g =
Gm/r2 and τff ∼ 1/

√
Gρ. We gain intuition about what these numbers mean. Indeed, a short free-

fall time means a stronger gravitational force (τff,� ∼ 1 hr whereas a white dwarf has τff,WD ∼ 1 s).
We now introduce the gravitational potential energy Epot which is a measure of how expensive it
is (in terms of work) to peel off all the shells of the star. By convention the potential at infinity
in zero (Epot(r = ∞) ≡ 0) and as it is a lower energy state to have the object bound by gravity
we always think of negative potential energies (Epot < 0). Thus, we define the potential energy in
terms of an integral over all particles (or mass shells)

Epot = −
∫ M

0

Gm(r)

r
dm . (2)

What average pressure 〈P 〉 is needed to counteract gravity?

Recall from statistics that for a discrete sample with relative weights wi for each value xi the
average of the ensemble is given by

〈x〉 ≡
∑

iwixi∑
j wj

.
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Thus for a continuous pressure distribution we average as follows:

〈P 〉 =

∫ R
0 4πr2Pdr∫ R
0 4πr2dr

=
1

V

∫ R

0
4πr2Pdr .

We make progress by performing integration by parts, i.e.

d(uv) = udv + vdu⇒
∫
udv = uv −

∫
vdu

where in this case u = P (r) dv = 4pir2dr

so that du =
dP (r)

dr
dr v =

4π

3
r3 ,

which results in ∫ R

0
4πr2Pdr =

4π

3
r3P (r)|R0 −

1

3

∫ R

0
4πr3dP

dr
dr .

Now, it is clear that r3P |r=0 = 0 and as before we can safely assume the pressure goes to zero
at the surface of the star so that r3P (r)|r=R = R3P (R) = 0. Therefore, we can use Eq. 1 for
hydrostatic equilibrium to simplify what is under the integrand

4πr3dP

dr
dr = 4πr3

(
−ρGm

r2

)
dr = −Gm

r

(
4πr3ρdr

)
= −Gm

r
dm . (3)

Note: The mass m = m(r) is a function of radius but we don’t usually write it that way.

Putting the last few equations together gives the average pressure in terms of the gravitational
potential energy,

〈P 〉 =
1

V

∫ R

0
4πr2Pdr =

1

3

∫ R

0

Gm

r
dm = −1

3

Epot

V
.

We emphasize this in boxed form

〈P 〉 = −1

3

Epot

V
. (4)

.1. What is pressure?

We know that pressure exerts some kind of force but we want a way to understand this macro-
scopic concept in terms of the microphysics. To do this we use kinetic theory, which is very
beautiful but can get quite complicated. It is helpful to think of pressure as “momentum flux”.
Dimensionally,

P =
∆F

∆A
=

∆p

∆t∆A
.

Particles in a box: Start by considering N particles in a box of sides L, area A = L2, and
volume V = L3 so that the number density is n = N/V . Assume all of the particles are at the same
temperature and have the same velocity vx. We simplify the discussion by considering only one
(x-) dimension. Thus the distance traveled in a small time ∆t is x = vx∆t and the correspondingly
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small volume is ∆V = vx∆tA. However, only half of the particles move in a direction to hit the
wall (the +x-direction) so the number of particles being transported is

∆N =
1

2
n∆V =

1

2
nvx∆tA .

The total change in momentum ∆px is given by considering collisions from all ∆N particles, each
with momentum transfer px − (−px) = 2px. With this factor of two the pressure is given by

P =
∆px

∆t∆A
=

2∆Npx
∆t∆A

=
nApxvx∆t

∆t∆A
= n〈pxvx〉 .

(This is an average which follows a Maxwell-Boltzmann distribution.) However, we need to consider
three dimensions which is actually quite straightforward if we assume an “isotropic pressure” so
that the x, y, and z directions are all treated on equal footing. We simply get a factor of one third
because 〈pxvx〉 = 1

3(〈pxvx〉+ 〈pxvx〉+ 〈pxvx〉) = 1
3〈~p · ~v〉 and so that

P =
n

3
〈~p · ~v〉 . (5)

Notice that this is very general. We can apply this to any system we like – gas, photons, or even
galaxies where the particles are stars!

Pressure of an Ideal Gas:

The pressure of an ideal gas is given by the well-known formula

P = nkBT ,

where kB is the Boltzmann constant and T is the absolute temperature of the gas. In special
relativity the energy ε and the momentum p may be related to the rest mass m0 via

ε2 − p2c2 = m2
0c

4 .

[For multiple particles the total energy E is the sum of energies (i.e. E =
∑
εi), which may be

as simple as E = Nε.] We can safely assume particles are non-relativistic if their kinetic energy
εkin = ε − m0c

2 is much less than their rest energy m0c
2, otherwise we assume a relativistic

scenario. Finally, we introduce the kinetic energy density (as per volume) so that ukin ≡ Ekin/V .
We specialize to the two cases:

(i) Non-relativistic (NR) particles:

p = mv and εkin =
1

2
mv2 ⇒ pv = 2εkin .

The pressure may therefore be calculated as

P =
n

3
〈~p · ~v〉 =

2

3

Nεkin

V
=

2

3
ukin .

We emphasize:

P =
2

3
ukin (NR) . (6)
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(ii) Ultra-relativistic (UR) particles:

v = c and εkin = pc ⇒ pv = εkin .

We then calculate and emphasize:

P =
1

3
ukin (UR) . (7)

The Virial Theorem (VT)

The factor of 2 difference between NR and UR particles is actually quite important! The reason
comes out when we consider the stability of a system with the Virial Theorem. Consider a NR
gas. We need an average pressure of at least

〈P 〉 = −1

3

Epot

V

but what is available is

〈P 〉 =
2

3

Ekin

V
.

Therefore, for a system to be in HSE we need

−1

3

Epot

V
=

2

3

Ekin

V

which gives the desired theorem about the kinetic and potential energy in HSE:

2Ekin = −Epot “Virial Theorem” (VT) . (8)

Note: Astrophysicists love the virial theorem because we talk about large systems which we
don’t know much about. Therefore, average and total quantities are very useful.
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