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PHYSICS OF COMPACT OBJECTS

In this course we will mostly be dealing with dead stars (i.e. white dwarfs, neutron stars, and
black holes). However, we must build up to these extreme cases. We will start with a simple but
good model. We consider a “theorist’s” idealized star:

• No magnetic fields

• No rotation

• Perfectly Spherical

Note: Real stars of course do not meet these criteria but to first order this is fairly good.

Units: Astronomers use the CGS (Centimeters–Grams–Seconds) system...NOT SI.
Thus, for the sun we have:

M� ∼= 2× 1033 g

R� ∼= 7× 1010 cm

⇒ 〈ρ〉� =
Mass

Volume
∼=

M
4π
3 R

3
∼= 1.4 g cm−3 , which is about the density of water.

This is important because a number by itself is not meaningful by itself, we need to compare it
with something we know about to gain physical intuition. Hence, we use the sun.

Mechanical Structure

In mechanics the Equation of Motion (e.o.m.) naturally arises from Newton’s 2nd Law,

Ftotal = ma or total force = mass× acceleration . (1)

In order to determine what forces are involved we recall the assumptions (no rotation, etc.) and
eliminate everything but gravity and a force from “pressure differences” as we move out from the
center. (There is a huge pressure at the center and very little at the surface. We assume some
smooth curve to connect the dots. . .)

Before we actually calculate these two forces we define a mass coordinate. The idea is to
relate mass with radius because the spherical geometry gives us the same information either way.
To do this we think of adding up very thin shells of mass dm and thickness dr at all radial values
less than r. The mass interior to the final shell at r is called m(r) and depends on the distance
from the center r. The volume in a shell is dV = 4πr2dr so the standard density relation gives

dm = 4πr2ρdr ,
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or upon integration

m(r) = 4π

∫ r

0
r′2ρ(r′)dr′ . (2)

For a star with constant density ρ = ρ0 this is trivial, however, this is not a realistic density profile!

The gravitation force on each shell is given by the gravitational acceleration g(r) multiplied by
the differential mass dm. Because of the spherical symmetry the gravitational acceleration is the
same as if all the interior mass m(r) was located at the center. Thus, the summary for gravity is:

Fgrav = −g(r)dm = −Gm(r)

r2
dm .

The pressure force on each shell is found by considering the pressure difference across the shells.
We call this the ‘pressure gradient’ because it involves the spatial derivative dP/dr. In fact, if we
think of force as pressure times area then in a given volume dV = (4πr2)dr the forces for pressure
combine as

Fpressure = Fpressure(r)− Fpressure(r + dr)

= 4πr2P (r)− 4πr2

[
P (r) +

dP

dr
dr

]
= −4πr2dP

dr
dr .

Putting these together we get the total force

Ftotal = −gdm− 1

ρ

dP

dr
(4πr2ρdr) =

[
−gdm− 1

ρ

dP

dr

]
dm .

But Ftotal = mass× acceleration = dm · d2r/dt2 so the mass dm falls out and the e.o.m. is

d2r

dt2
= −g − 1

ρ

dP

dr
. (3)

There are two things to take note of — First, g = g(r) is a function of radius, and second, the
pressure gradient is negative because it decreases in the outward direction.

Thought Experiment

What happens when we ‘switch off’ the pressure term? Remember the previous lecture’s OoMA:

d2

dt2
= −g(r)

⇒ −R
τ2

ff

≈ −GM
R2

⇒ τff ≈
1√

GM/R3
≈ 1√

Gρ
. (4)
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Aside: What are the important time scales?

• Hubble-time (-scale) ⇒ τH
∼= 13.7 Gyr — This is the age of the universe!

• Free fall time ⇒ τff — In order to gain intuition we compare this to τff,� ∼ 1 hr. The sun
hasn’t changed for a long time (∼Myr/Gyr) so 1 hr is an astronomical blink of the eye! This
tells us that pressure balances gravity extraordinarily well!

Hydrostatic (Mechanical) Equilibrium

We have seen that on short timescales stars like our sun do not change very much. In this case,
the time derivatives are zero (i.e. d/dt = 0) and Eq. 3 gives the equation of hydrostatic equilibrium:

dP

dr
= −ρg . (5)

Note: This is a powerful result which should be memorized!

Simple Estimate for Central Pressure Pc

Now we desire to connect what we observe from the surfaces of stars (T , ρ, P ,. . .) to the central
or interior quantities. To do this we use OoMA on Eq. 5. We assume “zero boundary conditions”
so that the pressure at the surface of the star goes to zero (i.e. P0 → 0). This is actually a fairly
good approximation and makes life a lot easier!

LHS:
dP

dr
≈ ∆P

∆r
=
P0 − Pc

R− 0
= −Pc

R

RHS:− ρg ≈ −M
R3

GM

R2
= −GM

2

R5
.

Putting these together gives an estimate for the central pressure,

Pc ≈
GM2

R4
. (6)

We can use solar values to benchmark other solutions. Thus, Pc,� ≈ 1016 dyne cm−2 ≈ 1015 Pa,
roughly ten orders of magnitude larger than the atmospheric pressure on earth.

Units: dyne cm−2 ≈ 1
10 Pa gives the CGS to SI conversion!

Also, remember the dimensional analysis of these energy and pressure:

pressure =
energy

volume
∼ [erg · cm−3] .
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