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BLACK HOLES

Review

We discovered the motion of particles in Schwarzschild geometry admits two constants of motion:

e =
ε

m0
= c2

(
1− RS

r

)
dt

dτ
= constant (“Energy per unit rest mass”). (1)

j =
J

m0
= r2

dϕ

dτ
= constant (“Angular momentum per unit rest mass”). (2)

In order to deduce these we utilized spherical symmetry to choose the easiest path possible. Thus,
we restricted to the equatorial plane (ϑ = π

2 and ϑ̇ = 0). Then we set our Lagrangian to be

L ≡ cdτ
dτ

= L(t, ṫ, r, ṙ, ϕ, ϕ̇) =

√
c2
(

1− RS

r

)
ṫ2 −

(
1− RS

r

)−1
ṙ2 − r2ϕ̇2 ,

and the constants of motion (conserved quantities) follow from the Euler-Lagrange equations.

Stellar Collapse

What happens when a star has a mass which is greater than the Oppenheimer-Volkoff limit
(M > MOV)? We do not know of a mechanism to ‘stop’ gravity at this point so we expect collapse!
Indeed Oppenheimer and Snyder showed this in 1939. We follow their argument.

We must consider the collapse from the viewpoint of two different observers:

Observer 1© is at the surface of the star and

Observer 2© is very far from the star (i.e. at infinity).

The choice is a good one because observer 1© knows everything from the star’s perspective (which
of course is what we want to know) and they can still communicate with the observer 2© at r =∞.
Furthermore, the geometry at observer 2© is simple . . . it is flat! The result is that observer 2©
recieves signals at longer and longer wavelengths, or equivalently the temporal separation between
photons is greater and greater.

The Schwarzschild metric is applicable to the exterior of collapsing stars even though the
spacetime is not time-independent! This is a result of “Birkhoff’s Theorem” which allows us to
treat the exterior as if the gravitational field was caused by a point mass. This is like drawing a
Gaussian surface around a blob of mass (or charge) and ignoring all of the complications inside.
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The story told by the observer at the surface

We are assuming spherical symmetry so we simply consider radial plunge orbits with ϑ̇ = ϕ̇ = 0.

−ds
2

dτ2
= c2 = c2

(
1− RS

r

)
ṫ2 −

(
1− RS

r

)−1
ṙ2 (“Radial plunge orbits”). (3)

This is one equation with two unknowns so we need more information! Conservation of energy says

e = c2
(

1− RS

r

)
dt

dτ
= constant ⇒ ṫ2 =

e2

c2

(
1− RS

r

)−1
.

Thus, with a little algebra we obtain

dr

dτ
= −c

[
e2

c4
− 1 +

RS

r

]1/2
. (4)

We have ṙ < 0 because this is an inward plunge.
Remember: The coordinate r(τ) determines the surface of the collapsing star!
Now fix the constant e so the plunge begins from rest, i.e. ṙ = 0 at r0:

⇒ 0 =
e2

c4
− 1 +

RS

r

⇒ dr

dτ
= −c

√
RS

r
− RS

r0
.

Solve by separation of variables:√
r0
RS

∫ r

r0

dr′√
r0/r′ − 1

= −c
∫ τ

0
dτ ′ .

The integral is not immediately obvious but we can use the “cycloid parameter”

η = cos−1
(

2
r

r0
− 1

)
⇒ dη

dr
=

−1√
1− (2r/r0 − 1)2

2

r0
= −1

r

1√
r0/r − 1

.

When we do this we immediately find that

τ(r) =
1

2

RS

c

(
r0
RS

)3/2

(sin η + η) where again η = cos−1
(

2
r

r0
− 1

)
. (5)

Therefore, the time to reach the center (i.e. η → π as r → 0) is

τ0 = τ(r = 0) =
π

2

RS

c

(
r0
RS

)3/2

.

We put this into an order of magnitude form to estimate the collapse time of a black hole:

τBH ≡
RS

c
≈ 10−5 s

(
M

M�

)
. (6)

Note: The collapse time for a black hole the size of the universe is the Hubble time H−10 ≈ 14 Gyr.
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