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NEUTRON STARS (CONT.)

Recall that the Schwarzschild radius RS = 2GM
c2

is used to gauge the importance of GR:

∗ Sun :
RS,�
R�

∼ 10−6 Small but measurable effect.

∗ WD :
RS,WD

RWD
∼ 1 km

10, 000 km
∼ 10−4 GR is still unimportant.

∗ NS :
RS,NS
RNS

∼ 6 km

10 km
∼ 0.6 GR is crucial for neutron stars.

Describe the mechanical structure with the Oppenheimer–Volkoff equation

The Oppenheimer–Volkoff equation was derived to be

dP

dr
= −ρGm

r2

(
1 +

P

ρc2

)(
1 +

4πr3P

mc2

)(
1− 2Gm

rc2

)−1
(Oppenheimer–Volkoff). (1)

We now consider the idealized case of constant density

ρ = ρ0 = constant, (2)

which is the profile for an “incompressible” gas. Of course the pressure will still have a gradient
so this gives good qualitative results. First we need the mass coordinate

m = m(r) =
4π

3
ρ0r

3 ⇒ M = m(R) =
4π

3ρ0R3
. (3)

To solve the equation we use separation of variables. The idea is based on the realization that the
right hand side separates into functions of the independent and dependent variables:

dP

dr
=

g(r)

f(P )
⇒

∫
f(P )dP =

∫
g(r)dr .

We get the right answer with this method but please don’t tell the mathematicians what we’re
doing. They hate us for this! The separation of the OV equation with our density profile is

dP

(1 + P/ρ0c2)
(
1 + 3P/ρ20c

2
) = −4πGρ20

3

rdr

(1− 8πGρ0r2/3c2)
.

The integration must be done from the outside in:∫ 0

P (r)

dP ′

(1 + P ′/ρ0c2) (1 + 3P ′/ρ0c2)
= −4πGρ20

3

∫ R

r

r′dr′

(1− 8πGρ0r′2/3c2)
.



2

A realistic treatment would look at the temperature to get the density and construct a stellar
atmosphere but we do not worry about this.
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=

(
1− 2GM

c2R
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)1/2

If we solve for P (r) and rewrite RS = 2GM/c2 then we get an equation for the pressure:

P (r) = ρ0c
2

[ √
1−RSr2/R3 −

√
1−RS/R

3
√

1−RS/R−
√

1−RSr2/R3

]
. (4)

Therefore, the central pressure is

PC = P (r)|r=0 = ρ0c
2

(
1−

√
1−RS/R

3
√

1−RS/R− 1

)
. (5)

Recall the central pressure for the Newtonian case is

PC =
2π

3
Gρ20R

2 .

If we Taylor expand around small RS/R we get the Newtonian case!
Notice: PC →∞ as R→ 9

8RS .
Q: What does this mean? A: For every NS RNS >

9
8RS!

Otherwise the pressure would be infinite. The argument is completely self-consistent and would
work for softer (smoother) density profiles even if the exact calculation is different. However, this
demands we are in HSE, so the breaking point is that we cannot maintain HSE if R < 9

8RS.
Therefore we can derive an upper limit for the mass of NSs by equating two equations:

(i) R =

(
3

4πρ0

)1/3

M1/3 and (ii)
9

8
RS =

9

4

G

c2
M .

We now solve for the maximum mass of a Neutron Star:

9

4

G

c2
Mmax =

(
3

4πρ0

)1/3

M1/3
max

and call it the “Oppenheimer–Volkoff Limit”

MOV ≡Mmax =
8

27

(
c2

G

)3/2(
3

4πρ0

)1/2

≈ 5 M� . (6)

Here we have assumed a high nuclear density of ρ0 ∼ 5 × 1014 g/cm3. Compare this to the
Chandrasekhar limit for WDs of MCh ≈ 1.4 M�.
Note: Quantum Mechanics does not enter here! Also, we do not know the exact equation of state
and for that reason we take MOV as a rough upper limit.
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