AST 353 Astrophysics — Problem Set 1

Prof. Volker Bromm — TA: Aaron Smith*

I. SIMPLE STELLAR MODEL
Assume a star has a radius of R = 3Ry and a quadratic density profile:
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Here, p. = 20 g/cm? is the central density. We have defined a new variable x = /R to make future
integrals easier, so the differential is dr = Rdz.

(a) Mass

To find the total mass M of the star we first find the mass coordinate m(r), which is the mass
interior to a shell of radius r:

m(r) = 47r/ 2 p(r)dr!
0
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m(x) = 4mp.R> (3x3 - 5x5> .

The total mass M is the mass inside a radius R, or where x = 1:

1 1 8
M =m(R) = 4mp.R (3 5) 15pCR .

We can find the solution in terms of solar masses by using the following information: R = 3Rg,
Re =7 x101% em, p. =20 g/cm?, and My = 2 x 1033 g. Together this gives:

8 ,
M = %(20 g/em?) (3.7 % 10'° cm)® = 3.1 x 10%° g =[155 My, .

(b) Average density and free-fall time

Recall how averages are found:

pdvV 1 (B M %p.RP 2
fde = V/o 4 p(r')dr' = v = I%R?’ =che= Sg/cm?’.
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The free-fall time 74 is then (using G = 6.67 x 1078 cm?/s?/g)

1 1
TR R = = 1369 s = 22.8 min ~ | — hour.

VG{p) \/(6.67 x 108 cm3/82/g) - (8 g/Cmg)

(c) Pressure

For this we need the equation of hydrostatic equilibrium:

dP____Gplm(r)

dr r2

Both p(r) and m(r) depend on the radius!!! Finally we can think of this as a simple ODE with
our boundary condition P(R) = 0 and the pressure is found by integration:
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In the final equality I switched the limits of integration because of the minus sign in the HSE
equation. The integration is easier in terms of x = r/R:
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1’3(50):175C 1—556 —i—2x—§x .

(d) Central pressure

The central pressure is simply the pressure at r =x =0

4nGp*R? 4 2
Po= Tl — SE(6.6Tx107F am®/sg) (20 g/em®)” (37 x 101 cm)” =|9.86 x 1017 dyne/cm?.
We may always check our answer by the OoMA estimate given in class
p o GM? — (6.67 x 107 cm®/s%/g) (3.1 x 10% g)? (3-7 x 10 cm) ™" =|3.3 x 10'® dyne/cm?
e~ = (6 cm”/s”/g) (3. g cm) =|3. yne/cm” .

These two methods are the same order of magnitude (~ 10*® dyne/ sz) so we know we have the
right answer!

(e) Total gravitational potential energy

The gravitational potential energy is given by

M
e [0,
0 r



However, the mass m(x) in terms of M is

and the mass differential dm is given in terms of M is
dm = 42 p(r)dr = 4w R32?p(x)dx = ?]\43:2 (z* - 1) dz,

so the total gravitational potential energy is given by

M
Epot = —/ Gm(r) dm
0

r

=— /01 % {fo* (g — ;#)] [1251\4:52 (z* = 1) dl}

2 1
__GM / (75;1;’4 — 302/% + 4459;’8> dx
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These quantities can be evaluated to give the energy in ergs

5GM?  5(6.67 x 1078 cm3/s%/g) (3.1 x 1035 )2
‘Epot’zf :7( X Cm /S /g)( X g) — 2)(1052 erg.
7 R 7 (37 x 1019 cm)

II. PARTICLE KINETIC ENERGIES

From Special Relativity we know a particle’s total energy e is related to its momentum p and
rest mass mg by

e = p2C2 + m%c4.

If we define the kinetic energy as
€kin — € — m002

then using a Taylor expansion (v/1 + x ~ 14 x/2 if x is small) and using the defining property for
NR particles that pc < mgc? then the kinetic energy reduces to the NR version:

€kin — € — moc2

= \/p2c® + m3ct — moc?
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