April 7, 2010

Reading: Chapter 10, Sections 10.1-10.4, 10.9

Wheeler on travel Wednesday and Friday, No Wheeler office hours Wed, Fri.

Exam 4, April 16.

Astronomy in the News?

Robert Quimby wins the ASP Trumpler

Award for best dissertation.

Pic of the Day -

Goal:

To understand how we have discovered supermassive black holes and how they affect galaxy formation and evolution.

Supermassive Black Holes

Long suspected in quasars, active galactic nuclei: huge power from small volume, billion solar mass black hole could do it.

More recently, proof that many (even most!) ordinary galaxies also have a supermassive black hole in their centers (dead quasar).

Again, do not yet see a "dark spot" but use Kepler's Laws, motion of many stars, gas ⇒ orbital period, separation

3.7 million M_{\odot} black hole in our Galaxy UCLA [link - movie] Up to billion M_{\odot} black holes in quasars.

Jet from billion M_☉ black hole in center of M87, large elliptical galaxy in the Virgo cluster (find Virgo!)

Surprising discovery:

It was long thought that supermassive black holes were somewhat incidental to galaxies,

Formed of matter that somehow drained into the center of the galaxy, so galaxy could have large mass or small mass black hole depending on circumstances.

Recent work by Karl Gebhardt (UT) and others has shown that even stars so far from the center that they cannot possibly feel the gravity of the black hole *now* are moving in such a way that *the larger the mass black hole, the higher the speed of the stars!*

Andromeda M31

Correlation Between Black Hole Mass and Galaxy Bulge Mass

The implication is that the mass of the galaxy (at least the inner portions, the Bulge) is always close to 800 times the mass of the black hole.

This means that *the formation of the black hole is somehow intimately connected with the formation and structure of the whole galaxy.*

Galaxies "know" how big a black hole to make.

Mechanism uncertain: Does the galaxy control the black hole or the black hole somehow control the galaxy?

Most popular current idea: energy from accretion of matter into disk around black hole feeds back to the surrounding galaxy, blowing excess galaxy gas away when galaxies are young and growing. Colliding black holes in 3C75, feed energy back into the stars and gas of the colliding galaxies.

One Minute Exam

How can we discover a stellar mass black hole that has no accretion disk around it?

Look for X-rays

Look for gamma-rays

Look for jets

We can't

One Minute Exam

What is the relation between the mass of a supermassive black hole and the galaxy in which it resides?

- There is none, the black hole can be big or small, depending on how it grew and for how long
- The larger the mass of the galaxy, the smaller the mass of the black hole
 - The larger the mass of the galaxy, the larger the mass of the black hole
 - The larger the radius of the galaxy, the larger the mass of the black hole

Goal:

To understand the nature of cosmic gamma-ray bursts, how they may represent the birth of black holes or magnetars, and how they are connected with Type Ic supernovae.

Gamma-Ray Bursts (Chapter 11)

Cosmic explosions, flashes of gamma-rays lasting about 30 seconds, detected by satellites.

Seen across the Universe.

Energy is expelled in narrow jets. Energy comparable to that of supernovae, but all in gamma-rays, with later *afterglow* in X-ray, radio and optical radiation. **Birth of a black hole?**

Swift satellite

Gamma-Ray Bursts unite stars and cosmology

Mystery since late 60's - satellites to monitor space nuclear test ban treaty, avoid confusion between astronomical effects, and bombs

Did not know the distance: guesses ranged from within the Solar system to cosmologically distant

Goal:

To understand what a gamma-ray burst "afterglow" is and why it is so important.