March 12, 2010

Current Reading, Chapter 9.5.1
Lecture notes
http://www.as.utexas.edu/astronomy/education/fall09/wheeler/309n.h tml? $a=1$ lec

Astronomy in the News? On display in Jerusalem for the first time, Einstein's original, hand-edited manuscript for his theory of General Relativisty - Gravity

New results from the recently-repaired Hubble Telescope, galaxies from shortly after the Dark Ages when the Universe was only a halfbillion years old, at Austin meeting on First Stars and First Galaxies.

Pic of the Day - mirrors to go on the next space telescope.

Balloon

Surface is curved 2 D space
3 D space around the balloon, inside the balloon is hyperspace with respect to the 2 D surface

Imagine a 2 D creature that can only perceive 2 D space.
2 D creatures can learn all about the curvature of the space they inhabit by doing geometry in 2 D - they never need to know about or care about "hyperspace."

That's us in 3 D ! There might be 4D (or higher!) hyperspace around us, but we don't perceive it.

We can, in principle, learn everything we need to know about our 3D Universe by doing 3D observations and experiments in the confines of our own dimensionality, just as 2D creatures could learn of their universe, the surface of the balloon.

Gravity

Still a deep mystery. Objects of different mass fall with the same acceleration.

Explore how Einstein taught us to think about gravity: no force of gravity, but the effect of curved space.

Straight line on a curved surface, possible or an oxymoron?

Geometry on the 2D surface of the balloon
Exercises of drawing straight lines

Surface of the Balloon -
What is a straight line, what is not?
What is "inside?" What is "outside?"
Where is the "center?"
What does it mean to go from surface point to surface point "through" the balloon interior?

Real 3 D curved space (for us!!) might curve in a 4 D "hyperspace," but we do not directly perceive that hyperspace.

Can determine curvature, shape of 3 D real space by doing 3 D geometry.

Do not need to ask about 4 D (but will!)

One Minute Exam

In a curved space:
\longrightarrow Straight lines always connect to themselves

Straight lines are the shortest distance between two points

There are no straight lines

The sum of the interior angles of a triangle is 180 degrees

One Minute Exam

Compared to the two-dimensional surface of a balloon, the inside of the balloon is:
\longrightarrow A two-dimensional hyperspace

A three-dimensional hyperspace

A four-dimensional hyperspace

Accessible to a two-dimensional creature

One Minute Exam

An intelligent ant crawls around on a surface, drawing triangles as the intersection of 3 straight lines. She finds that the sum of the interior angles is always more than 180 degrees and that triangles of the same size always give the same results. She deduces that the following will be true:
\longrightarrow If she draws two straight lines that are initially parallel they will begin to diverge.

The surface she is walking on is three-dimensional

- If she walks off in a straight line she will never return to her point of origin

If she walks off in a straight line she will return to her point of origin

Check out

Dr. Quantum in Flatland

Right in spirit, wrong in some essential details. See if you can figure out what those are.
http://youtube.com/watch?v=KhbGYn7aAUk

