Future of Life in the Solar System

Long-term Thinking

- Most of our current problems and challenges arise from short-term thinking
- How do we foster the long view?
 - The ten-thousand year clock
 - http://www.longnow.org/projects/clock/
 - Why 10,000 years?
 - Millions? Billions?
- What could we do on long time-scales?

Future of Life in Solar System

Terraform other planets (Mars most likely)

Space Colonies

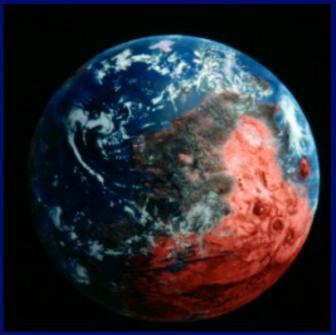
Solar Power from space

Dyson spheres

Robots

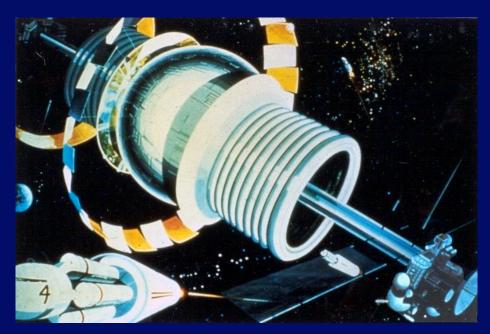
Von Neumann Devices

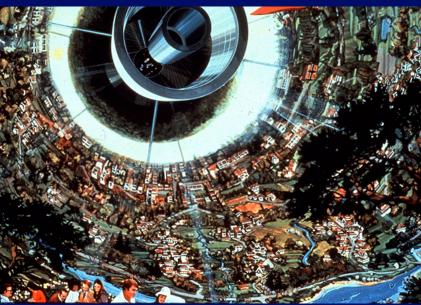

Terraforming Planets

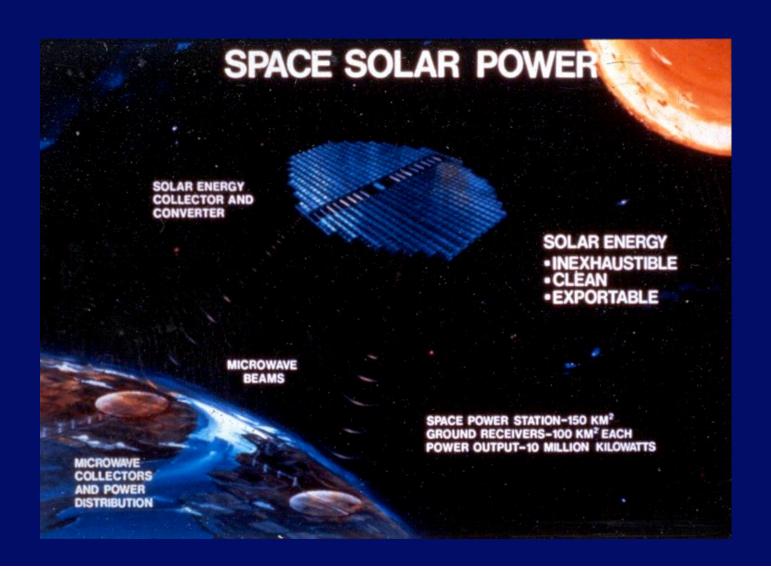

Seed other planets with "bio-engineered organisms"

These make the planet more habitable for humans

To terraform (need H ₂O, O₂, O₃) e.g., Melt polar caps on Mars (10 ¹⁴ tons of ice) 2500 to 10000 years to build up atm. pressure, get liquid water


Terraformed Mars

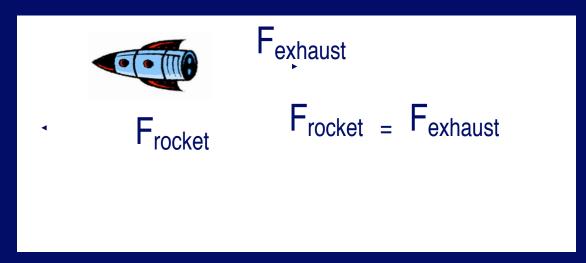



Ocean in northern lowlands covers 25% of planet

Space Colony (Island One)

Solar Power Satellites

Solar Power Satellite



Dyson Spheres

- Ultimate version of solar power satellites
- Surround the sun with collectors
- Have access to nearly all of solar luminosity
 - 2 x 10²⁶ Watts
- What if another civilization did this?
 - It would look like an infrared source
 - Hard to distinguish from young or old stars surrounded by dust

Rockets

Principle: Newton's Third Law

1. Exhaust velocity V_e (km s⁻¹)

V
$$_{\rm e} \propto \sqrt{\frac{1}{M}}$$

Recall Newton's second law:

F = (dp/dt) = m (dv/dt) = m a, if m constant If v constant, but m is not, F = (dm/dt) v

2. Thrust (Force) $F = (dM/dt) V_e$ (Newtons, Pounds) dM/dt = rate at which mass is ejected

3. Mass ratio

R_M = Total Mass at Takeoff Mass After Fuel Used Up

High mass ratios mean you need a lot of fuel to get a certain payload accelerated to a certain speed

4. Specific impulse (s.i.)

Thrust (Newtons/kg/sec,

Rate of Fuel Use Pounds/Pounds/sec = "sec")

A measure of efficiency.

Highest possible s.i. with chemical fuels is < 500

Can the Rocket take off?

F_{grav} F_{thrust}

To take off: Thrust > Weight

To escape gravity $v > v_{esc} = 11.2 \text{ km s}^{-1}$ (7 miles/sec)

This is very difficult for the gravity of the Earth So we use Multi-stage Rockets

Current situation

Space Shuttle: Mass = 2×10^6 kg

 $F_{thrust} = 29 \times 10^6$ Newtons $R_M = 68$ for actual payload s.i. = 455 sec. ~ best possible with chemical fuel

For more adventurous exploitation of Solar System Probably want Nuclear Propulsion Fission could give s.i. = 1.5×10^6 sec (in principle, more likely to get 20,000 sec)

Current Initiative

- Human mission to Mars
- Several attempts to get started in past
- Exploration Vision in 2004
 - First return to Moon
 - Then Mars
 - Long-term program needed
 - Currently under-funded, side-effects
 - http://www.nasa.gov/missions/solarsystem/explore_main.html

New Vehicles

- Retire space shuttle
- Go "back" to Apollo-like capsules (Orion) on big rockets (Ares V)
 - Twice the volume of Apollo (4-6 crew)
 - New technology, more flexible, automation
 - Launch-abort system
 - Saves crew if problem during launch
 - Solar panels for long term power

Robots

- Martian landers and rovers
- Likely to use for most solar system exploration
- Ultimate is Von Neumann device
 - Self-repairing, self-replicating robot
 - A kind of life?
- Human-machine hybrids
 - Artificial body parts increasingly common

Future of solar system

- Think about the long term future of solar system
- Will we colonize other planets?
- Mine asteroids for metals?