Astronomy 353 (Spring 2007) Lecture 23:

"The Oldest Stars in our Galaxy"

Dr. Anna Frebel

McDonald Fellow

McDonald Observatory The University of Texas at Austin

Recap

- Formation of the first stars
- Stellar deaths

Q: What is left from the early Universe that we can still observe today?

A: A lot..! We call this near-field cosmology

Cosmic timeline

We are Children of the Stars...!

- Elements are produced in stars and supernovae
- Successive built up of heavy elements in the Universe through "cosmic recycling"
 - => Old stars contain fewer elements (e.g. iron) than younger stars
 - => We look for the stars with the least amount of elements heavier than H and He!

Life

Stellar Archaeology I

Some definitions: Metals = concerns all elements, except hydrogen and helium Metal-poor star = Star with fewer metals than the Sun

•Population I: Metallicity similar to that of Sun; young disk stars

•Population II: Lower metallicity (metal-poor); old halo stars

•Population III: Theoretical population; the very first generation of stars that formed after the big bang

Stellar Archaeology II

Why are metal-poor stars interesting?

- Chemical evolution of the Galaxy from the Big Bang until today
- "Snapshots of the early Universe"
- Nucleosynthesis processes can be studied
- Models of the first stars can be tested
- They are the "closest relatives" to the First Stars

=> Near-field cosmology: they connect us to the high-redshift Universe

Making a rainbow

Spectral Comparison

The Metallicity Distribution Function

What [Fe/H] means to me:

Stars with metal contents much less than the Sun

 $[Fe/H] = log(N_{Fe}/N_{H}) \star - log(N_{Fe}/N_{H}) \odot$

[Fe/H] = 0: solar composition

[Fe/H] ~ - 1: boring...

[Fe/H] ~ -2 : good for statistics

 $[Fe/H] \sim -3: \dots$ interesting!

[Fe/H] < - 4: Oooh my GOD !!!!!!!!! J

How many metal-poor stars do we know??

- -2.0 < [Fe/H] < -1.0: very many
- -3.0 < [Fe/H] < -2.0: many
- -3.5 < [Fe/H] < -3.0: ~300
- -4.0 < [Fe/H] < -3.5: ~15
- -5.0 < [Fe/H] < -4.0: 1 (yet unpublished)
- -6.0 < [Fe/H] < -5.0: 2 ...

All those elements...

The Elements Song by Tom Lehrer

http://louhi.kempele.fi/~skyostil/archive/dump/flash/elements.swf http://www.edu/cyberpg.com/IEC/elementsong.html

5

/stamps/fitsfiles/plot_the_lot.prg -> carbon_star_sequence.ps

"Normal" Metal-Poor Stars

Frebel et al. (2006), ApJ in press

r-Process Element Enhanced Stars

(rapid neutron-capture process)

- Responsible for the production of heavy elements
- Only ~12 stars known that display strong neutron-capture lines associated with the r-process
- Chemical "fingerprint" of one previous nucleosynthesis event
- Nucleo-chronometry: age measurements from radioactive elements Th, U and stable r-process elements (Eu, Os, Ir)

Heavy neutron-capture

elements in stars

noble

gases 0

2

He

	1,01 Hydrogen	HA	_										A HI	IV A	VA	A IV.	VII A	4,00 Heliun
Period 2	3 Li 6.94 Lithim	4 Be 9.01 Seryllum											5 8 10.81 Boron	6 C 12.01 Dates	7 N 14.01 Hitogen	8 0 16.00 0xygan	9 F 19.00 Fuotre	10 Ne 20,18 Neon
Period 3	11 Na 22.99 Sodum	12 Mg 24.31 Manesum	I IN B	IV B	VВ	VI B	transitio	n metals	VIII		18	B	13 Al 26.98 //uminum	14 Si 28.09 Silcon	15 P 30.97 Phospherus	16 S 32.07 Sultr	17 CI 35,45 Olone	18 Ar 39.95 _{kigon}
Period 4	19 K 39.10 Astaustum	20 Ca 40.08 Catsim	21 Sc 44.96 Standum	22 Ti 47.68 Tanim	23 V 50.94 Varadium	24 Cr 52.00 Chromium	25 Mn 54.95 Margarasa	26 Fe 55.85	27 Co 58.93 Cotuit	28 Ni 58.70 Niidel	29 Cu 63.55 Copper	30 Zn 65.39 2m	31 Ga 69.72 Galler	32 Ge 72.61 Germanium	33 As 74.92 Arearic	34 Se 78.96 Selenum	35 Br 79.90 Bonies	36 Kr 83.80 Kyptor
Period 5	37 Rb 85.47 Rubiaum	38 • Sr 87.62 stortum	30 Y 88.91 Y01um	40 Zr 91.22 2008/0	41 Nb 92.91	42 Mo 95.94 Mathaterum	43 Tc (98) Technetum	44 Ru 101,07 Rationan	- 45 Rh 102.91 Photum	46 Pd 106.4 Palatium	.47 Ag 107.87 Silver	48 Cd 112.41 Jachum	49 In 114.82 naum	50 Sn 118.71 Tn	51 Sb 121.74 Attenory	52 Te 127.60 Tenn	53 126.90 tone	54 Xe 131.29 Janon
Period* 6	55 Cs 132.91 Cesium	56 Ba 137.33 Batum	Latthanide Series (see below)	72 Hf 178.49 Hatmium	73 Ta 180.94 Tantalum	74 W 1.83.85 Tungaten	75 Re 185.21 Rhmiur	76 Os 190.23 _{Osmium}	77 Ir 192.22 Iidun	78 Pt 195.08 Pathum	79 Au 196.97 Geld	80 Hg 200.59 Mercury	81 TI 204.38 Trailion	82 Pb 207.2 Leed	83 Bi 208.98 Bsnuth	84 Po (209) Piknim	85 At (210) Adative	86 Rn (222) Radon
Period 7	87 Fr (223) Francium	88 Ra 226.03 Redun	Azzinide series (see beizw)	104 Rf (261) Ratierlarium	105 Db (262) Dibilion	106 Sg (263) Sealargien	107 Bh (262) Botrium	108 HS (265) Hesien	109 Mt (266) Weitzerium	110 (269)	111 (272)	112 (277)		114 (281)	-	116 (289)		118 (293)
rare earth elements—Lanthanide series				57 La 136.91	50 Ce 140.12	59 Pr 140.91	60 Nd 144.24	61 Pm (145)	62 Sm 150.4 Security	63 Eu 151.96	64 Gd 157.25 Sectorian	65 Tb 158.93 Tetter	66 Dy 162.50	67 Ho 164.93	68 Er 167.26	69 Tm 168.93	70 Yb 173.04	71 Lu 174,01

94

Pu

(244)

Putonium

93

Np

237.05

95

Am

(243)

Americium

96

Cm

(247)

Curium

97

Bk

(247)

Berkelum

98

Cf

(251)

Californium

99

Es

(252)

Einsteinium

100

Fm

(257)

Fermium

101

Md

(258)

Mondoleva

102

No

(259)

Nobellum

103

Lr

(260)

Lawrencium

Actinide series 85

Ac

227.03

Adinium

Th

232.04

91 Pa

31.04

edarilinia en

238.03

Unanium

alkali

metala

FA.

1

Period

1

alicative

earth

HE 1523-0901

5. HE 1523-0901

Basic and stellar parameters:

- Magnitude: B = 12.1 mag
- Colour: $(B-V)_0 = 0.70 \text{ mag}$
- Reddening: E(B-V) = 0.02
- BVRIJHK photometry: $T_{eff} = 4630 \pm 70$ K (on Alonso et al. 1996 scale)
- Surface gravity: log g = 1.0 (ionisation equilibrium)
 => red giant
- Metallicity: [Fe/H] = -3.0

The r-Process Pattern

Abundances of HE 1523–0901

Frebel et al. (2007), in prep.

Fh II Line 4019Å

U II at 3859Å

Frebel et al. (2007), ApJL in press

Nucleo-Chronometric Age Dating

Age estimates can be obtained from a comparison of an observed abundance ratio of a radioactive element (such as Thorium, Uranium) to a stable r-process element (such as Europium, Osmium, Iridium) and a theoretically derived initial production ratio.

$$\Delta t = 46.8 * (\log (Th/r)_0 - \log (Th/r)_{obs})$$

$$\Delta t = 14.8 * (\log (U/r)_0 - \log (U/r)_{obs})$$

$$\Delta t = 21.8 * (\log (U/Th)_0 - \log (U/Th)_{obs})$$

The Age of HE 1523-0901

	Ratio	Age
	Th/Eu	11.5 ±4.7
	Th/Os	10.7 ±4.7
	Th/Ir	15.0 ±4.7
	U/Eu	13.2 ±2.2
	U/Os	12.9 ±2.2
	U/Ir	14.1 ±2.2
	U/Th	13.0 ±3.3
Age of HE 1523-0901:	average	13.2±1.1±2.0 Gyr

Age of the Universe: 13.7 Gyr (from WMAP, Spergel et al. 06)

3. HE 1327-2326

Basic and stellar parameters:

- Magnitude: B = 14.016 mag
- Colour: $(B-V)_0 = 0.40 \text{ mag}$
- Reddening: E(B-V) = 0.06 0.096
- *BVRIK* photometry: $T_{eff} = 6180 \pm 80K$ (on Alonso et al. 1996 scale)
- Proper motion is $\mu = 0.0733$ arcsec/yr => $M_V > 3.2$

=> surface gravity: $\log g = 3.7$ or 4.5 (subgiant or dwarf)

• Metallicity: [Fe/H] = -5.4

Medium-resolution spectrum

Fe I Lines

The lowest iron abundance ever measured in a star:

[Fe/H] = -5.4

This number corresponds to 1/250,000 of the solar iron content!!

NH 3360

CH 4300 Bandhead

The abundance patterns of HE 1327–2327 and HE 0107–5240

What is so Special About HE 1327–2326?

HE 1327–2326 has a very different chemical signature compared with the more metal-rich stars! So does HE 0107–5240 (Christlieb et al. 2002, 2004)

This is crucial observational information for the study of the early Universe

Possible Scenarios for the Origin of the Abundance Pattern

Binary system with mass transfer => Pop III star

"Chemical Compositions of the Galactic Halo"

- New program to observe metal-poor stars w/ [Fe/H]<-2.0
- Northern hemisphere
- Hobby-Eberly Telescope at McDonald Observatory
- Long-term status: 50+20 hours allocated for UT07-01, 35 hours for UT07-02

GOAL: observe ~700 stars in ~4 years

=> largest high-res database so far

The team:

C. Allende Prieto, T. Beers, V.Bromm, J. Cowan, A. Frebel, J. Rhee, I. Roederer, C. Sneden

Hobby-Eberly-Telescope

A sense of scale: A man stands next to the HET

The way I observe...

I get an email in the morning:

Date: Tue, 27 Mar 2007 11:38:33 +0000(GMT)
From: Astronomer <astronomer@mcs.as.utexas.edu>
To: anna@astro.as.utexas.edu
Subject: ut...011

UT Date: 27 Mar 2007

You have data from the HET.

target numbers: 2385 2387 2398 2416 2383

• • •

What can we do with all those data??

- r-process rich: high Eu; s-process: high Ba, low Eu
- alpha-poor: low Ca
- C-rich stars
- [Fe/H]<-4 stars
- anything peculiar
- Statistical analyses, CEMP-frequencies, spatial distribution
- Metallicity distribution function
- More global chemical characteristics of the Galactic components
- Testing theoretical predictions
- ... and more!