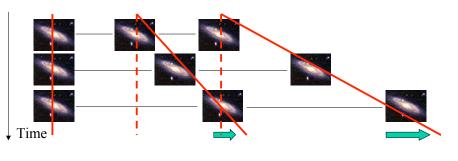
Expansion of the Universe

- The universe is expanding.
 - General relativity: space is dynamical and expanding.
 - Distance between galaxies increases with time
 - But there is important exception.
- $L = \mathbf{R} l$
 - L: actual distance (which increases with time)
 - *R*: scale factor (which represents the size of the universe and increases with time)
 - *l*: "comoving" distance (which is independent of time)

Velocity-distance Law

- Galaxies appear to be moving away from us.
 - Recession velocity of galaxies represents expansion velocity of space
- L = R l
 - Recession velocity V
 - = rate of increase of L
 - = (rate of increase of R) x l
 - = (rate of increase of R)/ $R \ge L$


```
= \mathbf{H} L
```

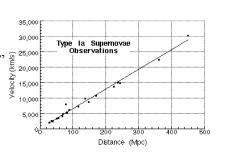
- More distant galaxies recede faster.
- But, this does not mean that we are at the center of the universe.

Comoving Coordinate

- Galaxies are <u>not</u> moving!
 - It is space between galaxies that is expanding.
 - (But there is peculiar motion which we have ignored so far)
- "Comoving coordinate" is the coordinate which expands in the same way as space.
 - Therefore, galaxies always remain at the same position in comoving coordinates.

Discovery: Expansion of the Universe

- How do we confirm the velocity-distance law?
 - We need recession velocities of galaxies: V
 - We need distances to galaxies: L
- How do we measure *V*?
 - Use Cosmological Redshifts: V = c z
 - This relation must be used with caution.
- How do we measure *L*?
 - There are various ways to estimate distances --- this is the most difficult part.
- Edwin Hubble (1889-1953) has done this and discovered expansion of the universe in 1929!


Expansion Rate

• V = HL

- H is the expansion rate, and is called "Hubble's parameter"
- *H* has to be determined observationally.

• H = 70 km/s/megaparsec, or

- H = 21.5 km/s/million light years
- Therefore, a galaxy at 100 million light-years away appears to move away from us at 2150 km/s.
- A galaxy at 1 billion light-years away appears to move away from us at 21500 km/s (about 7% of the speed of light)
- Galaxies at 14 billion light-years away appear to move away from us at the speed of light!

The age of the universe

- The age of the universe
 - Time elapsed from the birth of the universe (*R*=0) to the present epoch (*R*=*R*_{present}).
 - Therefore, it depends on how R changes with time.
- The latest determination = **13.7 billion years**
 - This estimate was made possible by knowing the expansion of the universe accurately.

Faster Than the Speed of Light

- Galaxies at 14 billion light-years away recede at the speed of light.
 - Even more distant galaxies recede faster than the speed of light.
- Is this in accord with relativity?
 - The answer is yes.
 - If galaxies were moving faster than the speed of light, it would be in conflict with relativity; however, *galaxies are <u>not</u> moving!* It is space that is expanding.
 - Besides, we don't see galaxies receding faster than the speed of light because light does not reach us: Horizon

Deceleration and Acceleration

- Time evolution of *R* is classified as follows.
 - Constant speed expansion
 - Decelerating expansion
 - Accelerating expansion
- The latest observations suggest that the expansion was
 - accelerating in the very early universe,
 - then decelerating until recently, and
 - accelerating again at present.